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PREFACE

The pattern set nearly 70 years ago by Maxwell’s Treatise on Electric-
ity and Magnetism has had a dominant influence on almost every subse-
quent English and American text, persisting to the present day. The
Treatise was undertaken with the intention of presenting a connected
account of the entire known body of electric and magnetic phenomena
from the single point of view of Faraday. Thus it contained little or
no mention of the hypotheses put forward on the Continent in earlier
years by Riemann, Weber, Kirchhoff, Helmholtz, and others. It is
by no means clear that the complete abandonment of these older theories
was fortunate for the later development of physics. So far as the
purpose of the Treatise was to disseminate the ideas of Faraday, it was
undoubtedly fulfilled; as an exposition of the author’s own contributions,
it proved less successful. By and large, the theories and doctrines
peculiar to Maxwell—the concept of displacement current, the identity
of light and electromagnetic vibrations—appeared there in scarcely
greater completeness and perhaps in a less attractive form than in the
original memoirs. We find that all of the first volume and a large part
of the second deal with the stationary state. In fact only a dozen pages
are devoted to the general equations of the electromagnetic field, 18 to
the propagation of plane waves and the electromagnetic theory of light,
and a score more to magnetooptics, all out of a total of 1,000. The
mathematical completeness of potential theory and the practical utility of
circuit theory have influenced English and American writers in very
nearly the same proportion since that day. Only the original and
solitary genius of Heaviside succeeded in breaking away from this course.

For an exploration of the fundamental content of Maxwell’s equations
one must turn again to the Continent. There the work of Hertz, Poin-
caré, Lorentz, Abraham, and Sommerfeld, together with their associates
and successors, has led to a vastly deeper understanding of physical
phenomens and to industrial developments of tremendous proportions.

The present volume attempts a more adequate treatment of variable
electromagnetic fields and the theory of wave propagation. Some atten-
tion is given to the stationary state, but for the purpose of introducing
fundamental concepts under simple conditions, and always with a view
to later application in the general case. The reader must possess a
general knowledge of electricity and magnetism such as may be acquired
from an elementary course based on the experimental laws of Coulomb,
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Ampére, and Faraday, followed by an intermediate course dealing with
the more general properties of circuits, with thermionic and electronic
devices, and with the elements of electromagnetic machinery, termi-
nating in a formulation of Maxwell’s equations. This book takes up
at that point. The first chapter contains a general statement of the
equations governing fields and potentials, a review of the theory of units,
reference material on curvilinear coordinate systems and the elements of
tensor analysis, concluding with a formulation of the field equations in
a space-time continuum. The second chapter is also general in char-
acter, and much of it may be omitted on a first reading. Here one will
find a discussion of fundamental field properties that may be deduced
without reference to particular coordinate systems. A dimensional
analysis of Maxwell’s equations leads to basic definitions of the vectors
E and B, and an investigation of the energy relations results in expres-
sions for the mechanical force exerted on elements of charge, current, and
neutral matter. In this way a direct connection is established between
observable forces and the vectors employed to describe the structure of a
field.

In Chaps. III and IV stationary fields are treated as particular cases
of the dynamic field equations. The subject of wave propagation is
taken up first in Chap. V, which deals with homogeneous plane waves.
Particular attention is given to the methods of harmonic analysis, and
the problem of dispersion is considered in some detail. Chapters VIand
VII treat the propagation of cylindrical and spherical waves in unbounded
gpaces. A necessary amount of auxiliary material on Bessel functions
and spherical harmonies is provided, and consideration is given to vector
solutions of the wave equation. The relation of the field to its source,
the general theory of radiation, and the outlines of the Kirchhoff-Huygens
diffraction theory are discussed in Chap. VIII.

Finally, in Chap. IX, we investigate the effect of plane, cylindrical,
and spherical surfaces on the propagation of electromagnetic fields.
This chapter illustrates, in fact, the application of the general theory
established earlier to problems of practical interest. The reader will
find here the more important laws of physical optics, the basic theory
governing the propagation of waves along cylindrical conductors, a
discussion of cavity oscillations, and an outline of the theory of wave
propagation over the earth’s surface.

It is regrettable that numerical solutions of special examples could
not be given more frequently and in greater detail. Unfortunately the
demands on space in a book covering such a broad field made this imprac-
tical. The primary objective of the book is a sound exposition of
electromagnetic theory, and examples have been chosen with a view to
illustrating its principles. No pretense is made of an exhaustive treat-
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ment of antenna design, transmission-line characteristics, or similar
topics of engineering importance. It is the author’s hope that the
present volume will provide the fundamental background necessary for
a critical appreciation of original contributions in special fields and satisfy
the needs of those who are unwilling to accept engineering formulas
without knowledge of their origin and limitations.

Each chapter, with the exception of the first two, is followed by a
set of problems. There is only one satisfactory way to study a theory,
and that is by application to specific examples, The problems have been
chosen with this in mind, but they cover also many topies which it was
necessary to eliminate from the text. This is particularly true of the
later chapters. Answers or references are provided in most cases.

This book deals solely with large-scale phenomena. It is a sore
temptation to extend the discussion to that fruitful field which Frenkel
terms the “ quasi-microscopic state,’”’ and to deal with the many beautiful
results of the classical electron theory of matter. In the light of con-
temporary developments, anyone attempting such a program must soon
be overcome with misgivings. Although many laws of classical electro-
dynamics apply directly to submicroscopiec domains, one has no basis
of selection. The author is firmly convineced that the transition must be
made from quantum electrodynamics toward classical theory, rather
than in the reverse direction. Whatever form the equations of quantum
electrodynamics ultimately assume, their statistical average over large
numbers of atoms must lead to Maxwell’s equations.

The m.k.s. system of units has been employed exclusively. There
is still the feeling among many physicists that this system is being forced
upon them by a subversive group of engineers. Perhaps it is, although
it was Maxwell himself who first had the idea. At all events, it is a good
system, easily learned, and one that avoids endless confusion in practical
applications. At the moment there appears to be no doubt of its uni-
versal adoption in the near future. Help for the tories among us who
hold to the Gaussian system is offered on page 241.

In contrast to the stand taken on the m.k.s. system, the author
has no very strong convictions on the matter of rationalized units.
Rationalized units have been employed because Maxwell’s equations are
taken as the starting point rather than Coulomb’s law, and it seems
reasonable to make the point of departure as simple as possible. As a
result of this choice all equations dealing with energy or wave propagation
are free from the factor 4r. Such relations are becoming of far greater
practical importance than those expressing the potentials and field
vectors in terms of their sources.

The use of the time factor ¢~ instead of ¢+** ig another point of
mild controversy. This has been done because the time factor is invar-
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iably discarded, and it is somewhat more convenient to retain the positive
exponent et*® for a positive traveling wave. To reconcile any formula
with its engineering counterpart, one need only replace —¢ by .

The author has drawn upon many sources for his material and is
indebted to his colleagues in both the departments of physics and of
electrical engineering at the Massachusetts Institute of Technology.
Thanks are expressed particularly to Professor M. F. Gardner whose
advice on the practical aspects of Laplace transform theory proved
invaluable, and to Dr. S. Silver who read with great care a part of the
manuscript. In conclusion the author takes this occasion to express his
gincere gratitude to Catherine N. Stratton for her constant encourage-

ment during the preparation of the manuscript and untiring aid in the

revision of proof.
JuLius ApaMs STRATTON.
CAMBRIDGE, Mass.,
January, 1941.
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ELECTROMAGNETIC THEORY

CHAPTER 1
THE FIELD EQUATIONS

A vast wealth of experimental evidence accumulated over the past
century leads one to believe that large-scale electromagnetic phenomena
are governed by Maxwell’s equations. Coulomb’s determination of the
law of force between charges, the researches of Ampére on the interaction
of current elements, and the observations of Faraday on variable fields
can be woven into a plausible argument to support this view. The
historical approach is recommended to the beginner, for it is the simplest
and will afford him the most immediate satisfaction. In the present
volume, however, we shall suppose the reader to have completed such a
preliminary survey and shall eredit him with a general knowledge of the
experimental facts and their theoretical interpretation. Electromagnetic
theory, according to the standpoint adopted in this book, is the theory of
Maxwell’s equations. Consequently, we shall postulate these equations
at the outset and proceed to deduce the structure and properties of the
field together with its relation to the source. No single experiment
constitutes proof of a theory. The true test of our initial assumptions
will appear in the persistent, uniform correspondence of deduction with
observation.

In this first chapter we shall be oceupied with the rather dry business
of formulating equations and preparing the way for our investigation.

MAXWELL'S EQUATIONS

1.1. The Field Vectors.—By an electromagnetic field let us under-
stend the domain of the four vectors E and B, D and H. These vectors
are assumed to be finite throughout the entire field, and at all ordinary
points to be continuous functions of position and time, with continuous
derivatives. Discontinuities in the field vectors or their derivatives
may occur, however, on surfaces which mark an abrupt change in the
physical properties of the medium. According to the traditional usage,
E and H are known as the intensities respectively of the electric and
magnetic field, D is called the electric displacement and B, the magnetic
induction. Eventually the field vectors must be defined in terms of the

experiments by which they can be measured. Until these experiments
1
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are formulated, there is no reason to consider one vector more funda-
mental than another, and we shall apply the word intensity to mean
indiscriminately the strength or magmtude of any of the four vectors
at a point in space and time.

The source of an electromagnetic field is a dlstnbutlon of electric
charge and current. Since we are concerned only with its macroscopic
effects, it may be assumed that this distribution is continuous rather
than discrete, and specified as a function of space and time by the den-
sity of charge p, and by the vector current density J.

We shall now postulate that at every ordinary point in space the field
vectors are subject to the Maxwell equations:

B
(¢))] VXE+§—-0;
oD
(2) VXH__at_J'

By an ordinary point we shall mean one in whose neighborhood the
physical properties of the medium are continuous. It has been noted that
the transition of the field vectors and their derivatives across a surface
bounding a material body may be discontinuous; such surfaces must,
therefore, be excluded until the nature of these discontinuities can be
investigated.

1.2. Charge and Current.—Although the corpuscular nature of elec-
tricity is well established, the size of the elementary quantum of charge
is too minute to be taken into account as a distinct entity in a strictly
macroscopic theory. Obviously the frontier that marks off the domain
of large-scale phenomena from those which are microscopic is an arbi-
trary one. To be sure, a macroscopic element of volume must contain
an enormous number of atoms; but that condition alone is an insufficient
criterion, for many crystals, including the metals, exhibit frequently a
microscopic “grain”’ or “mosaic’’ structure which will be excluded from
our investigation. We are probably well on the safe side in imposing
a limit of one-tenth of a millimeter as the smallest admissible element
of length. There are many experiments, such as the scattering of light
by particles no larger than 10~% mm. in diameter, which indicate that
the macroscopic theory may be pushed well beyond the limit suggested.
Nonetheless, we are encroaching here on the proper domain of quantum
theory, and it is the quantum theory which must eventually determine
the validity of our assumptions in microscopic regions.

Let us suppose that the charge contained within a volume element As
is Aq. The charge density at any point within Av will be defined by tne
relation

3) Ag = p Av.

Sec. 1.2] CHARGE AND CURRENT 3

Thus by the charge density at a point we mean the average charge per
unit volume in the neighborhood of that point. In a strict sense (3)
does not define a continuous function of position, for Av cannot approach
zero without limit. Nonetheless we shall assume that p can be repre-
sented by a function of the coordinates and the time which at ordinary
points is continuous and has continuous derivatives. The value of the
total charge obtained by integrating that function over a large-scale
volume will then differ from the true charge contained therein by a
microscopic quantity at most.

Any ordered motion of charge constitutes a current. A current dis-
tribution is characterized by a vector field which specifies at each point
not only the intensity of the flow but also its direction. As in the study
of fluid motion, it is convenient to imagine streamlines traced through
the distribution and everywhere tangent to the direction of flow. Con-
sider a surface which is orthogonal to a system of streamlines. The
current density at any point on this surface is then defined as a vector J
directed along the streamline through the point and equal in magnitude
to the charge which in unit time crosses unit area of the surface in the
vicinity of the point. On the other hand the current I across any surface
S is equal to the rate at which charge crosses that surface. If n is the
positive unit normal to an element Aa of S, we have

(4) , Al = J-n Aa.

Since Aa is 2 macroscopic element of area, Eq. (4) does not define the
current density with mathematical rigor as a continuous function of
position, but again one may represent the distribution by such a function
without incurring an appreciable error. The total current through 8§ is,
therefore,

(5) I=j;]-nda.

Since electrical charge may be either positive or negative, a convention
must be adopted as to what constitutes a positive current. If the flow
through an element of area consists of positive charges whose velocity
vectors form an angle of less than 90 deg. with the positive normal n,
the current is said to be positive. If the angle is greater than 90 deg., the
current is negative. Likewise if the angle is less than 90 deg. but the
charges are negative, the current through the element is negative. In
the case of metallic conductors the carriers of electricity are presumably
negative electrons, and the direction of the current density vector is
therefore opposed to the direction of electron motion.

Let us suppose now that the surface S of Eq. (5) is closed. We shall
adhere to the customary convention that the positive normal to a closed
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surface is drawn outward. In virtue of the definition of current as the
flow of charge across a surface, it follows that the surface integral of the
normal component of J over S must measure the loss of charge from the
region within. There is no experimental evidence to indicate that under
ordinary conditions charge may be either created or destroyed in macro-
scopic amounts. One may therefore write

d
(6) LJ-nda——E e d,

where V is the volume enclosed by S, as a relation expressing the con-
servation of charge. The flow of charge across the surface can originate
in two ways. The surface S may be fixed in space and the density p
be some function of the time as well as of the coordinates; or the charge
density may be invariable with time, while the surface moves in some
prescribed manner. In this latter event the right-hand integral of (6)
is a function of time in virtue of variable limits. If, however, the surface
is fixed and the integral convergent, one may replace d/d¢ by a partial
derivative under the sign of integration.

@ : LJ-nda=—fV3—;’dv.

We shall have frequent occasion to make use of the divergence theorem
of vector analysis. Let A(z, y, 2) be any vector function of position
which together with its first derivatives is continuous throughout a
volume V and over the bounding surface S. The surface S is regular
but otherwise arbitrary.! Then it can be shown that

) J;A-nda=J;V-Adv.

As a matter of fact, this relation may be advantageously used as a
definition of the divergence. To obtain the value of V - A at a point P
within V, we allow the surface S to shrink about P.  When the volume V
has become sufficiently small, the integral on the right may be replaced
by VV - A, and we obtain

©) V-A=1im1—fA-nda.
S—0 14 S

1A vegular element of arc is represented in parametric form by the equations
z = z(t), y = y(t), 2 = 2(t) such that in the interval ¢ < ¢ < b z, y, z are continuous,
single-valued functions of ¢ with continuous derivatives of all orders unless otherwise
restricted. A regular curve is constructed of a finite number of such ares joined end
to end but such that the curve does not cross itself. Thus a regular curve has no
double points and is piecewise differentiable. A regular surface element is 2 portion
of surface whose projection on a properly oriented plane is the interior of a regular
closed curve. Hence it does not intersect itself. Cf. Kellogg, “ Foundations of Poten-
tial Theory,” p. 97, Springer, 1929, -

[\
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The divergence of a vector at a point is, therefore, to be interpreted as the
integral of its normal component over an infinitesimally small surface
enclosing that point, divided by the enclosed volume. The flux of a
vector through a closed surface is a measure of the sources within; hence
the divergence determines their strength at a point. Since S has been
shrunk close about P, the value of A at every point on the surface may
be expressed analytically in terms of the values of A and its derivatives
at P, and consequently the integral in (9) may be evaluated, leading in
the case of rectangular coordinates to

_ 0A.
oz

A,
dy

aA,.
0z

(10) V-A + +
On applying this theorem to (7) the surface integral is transformed

to the volume integral

(11) L(v-]+%§>du=o.

Now the integrand of (11) is a continuous function of the coordinates
and hence there must exist small regions within which the integrand does
not change sign. If the integral is to vanish for arbitrary volumes V, it
is necessary that the integrand be identically zero. The differential
equation

(12) vVoI+ 2

expresses the conservation of charge in the neighborhood of a point.
By analogy with an equivalent relation in hydrodynamics, (12) is fre-
quently referred to as the equation of continuity. _

If at every point within a specified region the charge density is con-
stant, the current passing into the region through the bounding surface
must at all times equal the current passing outward. Over the bounding
surface S we have

(13) fJ-nda=0,
and at every interior point
(14) - v-J=0.

Any motion characterized by vector or scalar quantities which are
independent of the time is said to be steady, or stationary. A steady-
state flow of electricity is thus defined by a vector J which at every point
within the region is constant in direction and magnitude. In virtue of
the divergenceless character of such a current distribution, it follows
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that in the steady state all streamlines, or current filaments, close upon
themselves. The field of the vector J is solenoidal.

1.3. Divergence of the Field Vectors.—Two further conditions satis-
fied by the vectors B and D may be deduced directly from Maxwell’s
equations by noting that the divergence of the curl of any vector vanishes
identically, We take the divergence of Eq. (1) and obtain

B _ B
(15) V-a—t—a—tV-B—O.
The commutation of the operators V and 9/dt is admissible, for at an
ordinary point B and all its derivatives are assumed to be continuous.

It follows from (15) that at every point in the field the divergence of B -

is constant. If ever in its past history the field has vanished, this con-
stant must be zero and, since one may reasonably suppose that the
initial generation of the field was at a time not infinitely remote, we
conclude that

. (16) V-B =0,

and the field of B is therefore solenoidal.
Likewise the divergence of Eq. (2) leads to

d
@17 V-]+a—tV-D—0,
or, in virtue of (12), to
a —
(18) a—t(V-D—-p)—O.

If again we admit that at some time in its past or future history the field
may vanish, it is necessary that

(19) VD =p.

The charges distributed with a density p constitute the sources of the
vector D.

The divergence equations (16) and (19) are frequently included as
part of Maxwell’s system. It must be noted, however, that if one assumes
the conservation of charge, these are not independent relations.

1.4. Integral Form of the Field Equations.—The properties of an
electromagnetic field which have been specified by the differential equa-
tions (1), (2), (16), and (19) may also be expressed by an equivalent
gystem of integral relations. To obtain this equivalent system, we apply
a second fundamental theorem of vector analysis.

According to Stokes’ theorem the line integral of a vector taken
about a closed contour can be transformed into a surface integral extended

N
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over a surface bounded by the contour. The contour €' must either be
regular or be resolvable into a finite number of regular arcs, and it is
assumed that the otherwise arbitrary surface S bounded by € is two-
sided and may be resolved into a finite number of regular elements. The
positive side of the surface S is related to the positive direction of circu-
lation on the contour by the usual convention that an observer, moving
in a positive sense along C, will have the positive side of S on his left.
Then if A(z, y, 2) is any vector function of position, which together with
its first derivatives is continuous at all points of S and C, it may be shown
that

(20) LA-ds=j:g(VxA)-nda,

where ds is an element of length along ' and n is a unit vector normal to
the positive side of the element of area da. This transformation can
also be looked upon as an equation defining the curl. To determine the
value of V X A at a point P on S, we allow the contour to shrink about P
until the enclosed area S is reduced to an infinitesimal element of a plane
whose normal is in the direction specified by n. The integral on the
right is then equal to (V X A) - nS, plusinfinitesimals of higherorder. The
projection of the vector V X A in the direction of the normal is, therefore,

.1

21 (VXA)-n—EE%SLA ds.

The curl of a vector at a point is to be interpreted as the line integral of
that vector about an infinitesimal path on a surface containing the point,
per unit of enclosed area. Since A has been assumed analytic in the
neighborhood of P, its value at any point on C may be expressed in
terms of the values of A and its derivatives at P, so that the evaluation of
the line integral in (21) about the infinitesimal path can actually be
carried out. In particular, if the element S is oriented parallel to the
yz-coordinate plane, one finds for the z-component of the curl

04, _ 24y
dy daz

(22) (VX A), =

Proceeding likewise for the y- and z-components we obtain.

_ (04 o4\ | (94, oA, 04s _ 94,
(23) VX‘A—I(— —)‘l'](w )-I—k(a:b )

oy dz oz dy
i 3§ k
|8 9 9
dz 0dy Oz
A. 4, A.
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Let us now integrate the normal component of the vector dB/dt over
any regular surface S bounded by a closed contour C. From (1) and
(20) it follows that

(24) fE-ds+faB-nda=-’0.
c s dt

If the contour is fixed, the operator 3/t may be brought out from under
the sign of integration.

(25) fE-ds=—§fB-nda.
c ot Js

By definition, the quantity

(26) %= [ B-nda

18 the magnetic flux, or more specifically the flux of the vector B through
the surface. According to (25) the line integral of the vector E about any
closed, regular curve in the field is equal
to the time rate of decrease of the magnetic
flux through any surface spanning that
curve. The relation between the direction
Ea of circulation about a contour and the posi-

tive normal to a surface bounded by it is

Fia. 1__Convenﬁon€elaﬁng illustrated in Fig. 1. A positive direction
direction of the positive normal ‘about C' is chosen arbitrarily and the flux &
:‘bz‘l’lttgecg;f;um’é‘_ of circulation  jq then positive or negative according to

the direction of the lines of B with respect
to the normal. The time rate of change of ® is in turn positive or nega-
tive as the positive flux is increasing or decreasing.

We recall that the application of Stokes’ theorem to Eq. (1) is valid
only if the vector E and its derivatives are continuous at all points of S
and C. Since discontinuities in both E and B occur across surfaces
marking sudden changes in the physical properties of the medium, the
question may be raised as to what extent (25) represents a general law
of the electromagnetic field. One might suppose, for example, that the
contour linked or pierced a closed iron -transformer core. To obviate
this difficulty it may be imagined that at the surface of every material
body in the field the physical properties vary rapidly but continuously
within a thin boundary layer from their values just inside to their values
just outside the surface. In this manner all discontinuities are eliminated
from the field and (25) may be applied to every closed contour.

The experiments of Faraday indicated that the relation (25) holds
whatever the cause of flux variation. The partial derivative implies a

n
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variable flux density threading a fixed contour, but the total flux can
likewise be changed by a deformation of the contour. To take this into
account the Faraday law is written generally in the form

__da .
@7 J;E-ds— EtJ;B n da.

It can be shown that (27) is in fact a consequence of the differential
field equations, but the proof must be based on the electrodynamics of
moving bodies which will be touched upon in Sec. 1.22,

In like fashion Eq. (2) may be replaced by an equivalent integral
relation,

. d
(28) J;H-ds—I+%J;D-nda.

where I is the total current linking the contour as defined in (5). In the
steady state, the integral on the right iszero and the conduction current I
through any regular surface is equal to the line integral of the vector H
about its contour. If, however, the field is variable, the vector dD/dé
has associated with it a field H exactly equal to that which would be
produced by a current distribution of density

(29) v=-2

To this quantity Maxwell gave the name “ displacement current,” a term
which we shall occasionally employ without committing ourselves as
yet to any particular interpretation of the vector D.

The two remaining field equations (16) and (19) can be expressed in
an equivalent integral form with the help of the divergence theorem.
One obtains

(30) gSSB-nda =0,

stating that the total flux of the vector B crossing any closed, regular
surface is zero, and

(31) g;SD-nda=ﬁ,pdv=q,

according to which the flux of the vector D through a closed surface is
equal to the total charge ¢ contained within. The circle through the
gign of integration is frequently employed to emphasize the fact that a
contour or surface is closed.
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MACROSCOPIC PROPERTIES OF MATTER

1.5. The Inductive Capacities ¢ and y.—No other assumptions have
been made thus far than that an electromagnetic field may be charac-
terized by four vectors E, B, D, and H, which at ordinary points satisfy
Maxwell’s equations, and that the distribution of current which gives
rise to this field is such as to ensure the conservation of charge. Between
the five vectors E, B, D, H, J there are but two independent relations, the
equations (1) and (2) of the preceding section, and we are therefore obliged
to impose further conditions if the system is to be made determinate.

Let us begin with the assumption that at any given point in the field,
whether in free space or within matter, the vector D may be represented
as a function of E and the vector H as a function of B.

€Y D = D(E), H=H(®).

The nature of these functional relations is to be determined solely by the
physical properties of the medium in the immediate neighborhood of the
specified point. - Certain simple relations are of most common occurrence.

1. In free space, D differs from E only by a constant factor, as does H
from B, Following the traditional usage, we shall write
@ D=«E H=_B.

o
The values and the dimensions of the.constants e and g, will depend
upon the system of units adopted. In only one of many wholly arbitrary
systems does D reduce to E and H to B in empty space.

2. If the physical properties of a body in the neighborhood of some
interior point are the same in all directions, the body is said to be 4so-
tropic. At every point in an isotropic medium D is parallel to E and H
is parallel to B. The relations between the vectors, moreover, are linear
in almost all the soluble problems of electromagnetic theory. For the
isotropic, linear case we put then

1
(3) D = EE, = ;B.

The factors e and p will be called the inductive capacities of the medium.
The dimensionless ratios

= £ =&
4) ke = =
are independent of the choice of units and will be referred to as the
specific inductive capacities. The properties of a homogeneous medium
are constant from point to point and in this case it is customary to refer

o
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to «, as the dielectric constant and to k. as the permeability. In general,
however, one must look upon the inductive capacities as scalar functions
of position which characterize the electromagnetic properties of matter
in the large.

3. The properties of anisoiropic matter vary in a different manner
along different directions about a point. In this case the vectors P and
E, H and B are parallel only along certain preferred axes. If it may be
assumed that the relations are still linear, as is usually the case, one
may express each rectangular component of D as a linear function of the
three components of E.

Dz = €11E= + éley + €13Ez,
(5) -Dz/ = enkE. + ézzEy + 523Ez,
D, = es,E. + €3.E, + essE..

The coefficients ¢ of this linear transformation are the components of a
symmetric tensor. An analogous relation may be set up between the
vectors H and B, but the occurrence of such a linear anisotropy in what
may properly be called macroscopic problems is rare.

The distinction between the microscopic and macroscopic viewpoints
is nowhere sharper than in the interpretation of these parameters e and g,
or their tensor equivalents. A microscopic theory must deduce the
physical properties of matter from its atomic structure. It must enable
one to calculate not only the average field that prevails within a body but
also its local value in the neighborhood of a specific atom. It must tell
us how the atom will be deformed under the influence of that local field,
and how the aggregate effect of these atomic deformations may be
represented in the large by such parameters as ¢ and u.

We, on the other hand, are from the present standpoint sheer behav-
iorists. Our knowledge of matter is, to use a large word, purely phe-
nomenological. Eachsubstanceisto be characterized electromagnetically
in terms of a minimum number of parameters. The dependence of the
parameters € and g on such physical variables as density, temperature,
and frequency will be established by experiment. Information given by
such measurements sheds much light on the internal structure of matter,
but the internal structure is not our present concern.

1.6. Electric and Magnetic Polarization.—To describe the electro-
magnetic state of -a sample of matter, it will prove convenient to intro-
duce two additional vectors. We shall define the electric and magnetic
polarization vectors by the equations

©6) P =D — &E, M=%B—E
0

The polarization vectors are thus deﬁnitely associated with matter and
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vanish in free space. By means of these relations let us now eliminate
D and H from the field equations. There results the system

0B
VXE+ 2o,
) VXB—60#0%=#0<J+%+VXM)’

V.B =0, v-E=€1(p—v-P),
0

which we are free to interpret as follows: the presence of rigid material
bodies in an electromagnetic field may be completely accounted for by an
equivalent distribution of charge of density —V -P, and an equivalent

distribution of current of density % + V X M.

In isotropic media the polarization vectors are parallel to the corre- '

sponding field vectors, and are found experimentally to be proportional
to them if ferromagnetic materials are excluded. The electric and
magnetic susceptibilities x. and x. are defined by the relations

(8) P = x.«E, M = x,H.

Logically the magnetic polarization M should be placed proportional to B.
Long usage, however, has associated it with H and to avoid confusion
on a matter which is really of no great importance we adhere to this
convention. The susceptibilities x. and x» defined by (8) are dimension-
less ratios whose values are independent of the system of units employed.
In due course it will be shown that E and B are force vectors and in this
sense are fundamental. D and H are derived vectors associated with
the state of matter. The polarization vector P has the dimensions of D,
not E, while M and H are dimensionally alike. From (3), (6), and (8) it
follows at once that the susceptibilities are related to the specific induc-
tive capacities by the equations

(9) Xe = ke — 1,

Xm=Km_1.

In anisotropic media the susceptibilities are represented by the com-
ponents of a tensor.

It will be a part of our task in later chapters to formulate experiments
by means of which the susceptibility of a substance may be accurately
measured. Such measurements show that the electric susceptibility is
always positive. In gases it is of the order of 0.0006 (air), but in liquids
and solids it may attain values as large as 80 (water). An inherent
difference in the nature of the vectors P and M is indicated by the fact
that the magnetic susceptibility x, may be either positive or negative.
Substances characterized by a positive susceptibility are said to be

=g

ey
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paramagnetic, whereas those whose susceptibility is negative are called
diamagnetic. The metals of the ferromagnetic group, including iron,
nickel, cobalt, and their alloys, constitute a particular class of substances
of enormous positive susceptibility, the value of which may be of the
order of many thousands. In view of the nonlinear relation of M to H
peculiar to these materials, the suseeptibility x. must now be interpreted
as the slope of a tangent to the M-H curve at a point corresponding to a
particular value of H. To include such cases the definition of suscepti-
bility is generalized to

M

(10) Xm = W.

The susceptibilities of all nonferromagnetic materials, whether para-
magnetic or diamagnetic, are so small as to be negligible for most practical
purposes.

Thus far it has been assumed that a functional relation exists
between the vector P or M and the applied field, and for this reason
they may properly be called the induced polarizations. Under certain
conditions, however, a magnetic field may be associated with a ferro-
magnetic body in the absence of any external excitation. The body is
then said to be in a state of permanent magnetization. We shall main-
tain our initial assumption that the field both inside and outside the
magnet is completely defined by the vectors B and H. But now the
difference of these two vectors at an interior point is a fized vector Mo,
which may be called the intensity of magnetization and which bears no
functional relationship to H. On the contrary the magnetization M,
must be interpreted as the source of the field. If an external field is
superposed on the field of a permanent magnet, the intensity of magneti-
zation will be augmented by the induced polarization M. At any interior
point we have, therefore,

(11) B = u(H + M + My).

‘Of this induced polarization we can only say for the present that it is a

function of the resultant H prevailing at the same point. The relation
of the resultant field within the body to the intensity of an applied field
generated by external sources depends not only on the magnetization
M, but also upon the shape of the body. There will be occasion to
examine this matter more carefully in Chap. IV.

1.7. Conducting Media.—To Mazxwell’s equations there must now
be added a third and last empirical relation between the current density
and the field. We shall assume that at any point within a liquid or
solid the current density is a function of the field E.

(12) J = J(E).
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The distribution of current in an ionized, gaseous medium may depend
also on the intensity of the magnetic field, but since electromagnetic
phenomena in gaseous discharges are in general governed by a multitude
of factors other than those taken into account in the present theory, we
shall exclude such cases from further consideration.!

Throughout a remarkably wide range of conditions, in both solids
and weakly ionized solutions, the relation (12) proves to be linear.

(13) J =¢E.
The factor ¢ is called the conductivity of the medium. The distinction

between good and poor conductors, or insulators, is relative and arbitrary.
All substances exhibit conductivity to some degree but the range of

observed values of ¢ is tremendous. The conductivity of copper, for

example, is some 107 times as great as that of such a “good”’ conductor
as sea water, and 10%° times that of ordinary glass. In Appendix ITI
will be found an abbreviated table of the conductivities of representative
materials.

Equation (13) is simply Ohm’s law. Let us imagine, for example, a
stationary distribution of current throughout the volume of any con-
ducting medium. In virtue of the divergenceless character of the flow
this distribution may be represented by closed streamlines. If @ and b
are two points on a particular streamline and ds is an element of its
length, we have

(14) j;bE-ds - ng-ds.

A bundle of adjacent streamlines constitutes a current filament or tube.
Since the flow is solenoidal, the current I through every cross section of
the filament is the same. Let S be the cross-sectional area of the filament
on a plane drawn normal to the direction of flow. S need not be infini-
tesimal, but is assumed to be so small that over its area the current
density is uniform. Then 8J-ds = I ds, and

b 54
(15) fE-ds=If—ds.
a a G'S
The factor,
1
1 = —
(16) R = ds,

! It is true that to a very slight degree the current distribution in a liquid or solid
conductor may be modified by an impressed magnetic field, but the magnitude of this

so-called Hall effect is 5o small that it may be ignored without incurring an appreciable
€rTor.
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is equal to the resistance of the filament between the points a and b.
The resistance of a linear section of homogeneous conductor of uniform
cross section S and length 1 is

(17) E=-2%

a formula which is strictly valid only in the case of stationary currents.

Within a region of nonvanishing conductivily there can be no permanent
distribution of free charge. This fundamentally important theorem can
be easily demonstrated when the medium is homogeneous and such that
the relations between D and E and J and E are linear. By the equation
of continuity,

e) e)
(18) v-J+a—f=v-aE+§=

On the other hand in a homogeneous medium

1
(19) V'E=;P:

which combined with (18) leads to
Op , o _
(20) o + < p=20.

The density of charge at any instant is, therefore,

(21) p=pe
the constant of integration p, being equal to the density at the time f = 0.
The initial charge distribution throughout the conductor decays expo-
nentially with the time at every point and in a manner wholly inde-
pendent of the applied field. If the charge density is initially zero, it
remains zero at all times thereafter.

The time

(22) T =

Qie

required for the charge at any point to decay to 1/e of its original vaiue
is called the relazation ttme. In all but the poorest conductors = is
exceedingly small. Thus in sea water the relaxation time is about
2 X 10710 gee.; even in such a poor conductor as distilled water it is not
greater than 196 sec. In the best insulators, such as fused quartz, it
may nevertheless assume values exceeding 105 sec., an instance of the
extraordinary range in the possible values of the parameter o.
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Let us suppose that at £ = 0 a charge is concentrated within a small
spherical region located somewhere in a conducting body. At every
other point of the conductor the charge density is zero. The charge
within the sphere now begins to fade away exponentially, but according
to (21) no charge can reappear anywheré within the conductor. What
becomes of it? Since the charge is conserved, the decay of charge
within the spherical surface must be accompanied by an outward flow,
or current. No charge can accumulate at any other interior point; hence
the flow must be divergenceless. It will be arrested, however, on the
outer surface of the conductor and it is bhere that we shall rediscover the
charge that has been lost from the central sphere. This surface charge
makes its appearance at the exact instant that the interior charge begins
to decay, for the total charge is constant.

UNITS AND DIMENSIONS

1.8. The ML.K.S. or Giorgi System.—An electromagnetic fleld thus
far is no more than a complex of vectors subject to a postulated system of
differential equations. To proceed further we must establish the physical
dimensions of these vectors and agree on the units in which they are
to be measured.

In the customary sense, an ‘“absolute’ system of units is one in which
every quantity may be measured or expressed in terms of the three
fundamental quantities mass, length, and time. Now in electromagnetic
theory there is an essential arbitrariness in the matter of dimensions
which is introduced with the factors ¢ and py connecting D and E, H
and B respectively in free space. No experiment has yet been imagined
by means of which dimensions may be attributed to either ¢, or uo as
an independent physical entity. On the other hand, it is a direct conse-
quence of the field equations that the quantity

1
vV €olko

shall have the dimensions of a velocity, and every arbitrary choice of
and po 18 subject to this restriction. The magnitude of this velocity
cannot be calculated a priori, but by suitable experiment it may be
measured. The value obtained by the method of Rosa and Dorsey of
the Bureau of Standards and corrected by Curtis! in 1929 is

1
vV €opo

1 Rosa and Dorsey, A New Determination of the Ratio of the Electrostatic Unit
of Electricity, Bur. Standards, Bull. 3, p. 433, 1907. CurTis, Bur. Standards J.
Research, 3, 63, 1929.

(1) c=

2 c= = 2.99790 X 108 meters/sec.,
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or for all practical purposes
(3) c=3X108

Throughout the carly history of electromagnetic theory the absolute
electromagnetic system of units was employed for all scientific investiga-
tions. In this system the centimeter was adopted as the unit of length,
the gram as the unit of mass, the second as the unit of time, and as a
fourth unit the factor uo was placed arbitrarily equal to unity and con-
sidered dimensionless. The dimensions of e were then uniquely deter-
mined by (1) and it could be shown that the units and dimensions of
every other quantity entering into the theory might be expressed in
terms of centimeters, grams, seconds, and go. Unfortunately, this abso-
lute system failed to meet the needs of practice. The units of resistance
and of electromotive force were, for example, far too small. To remedy
this defect a practical system was adopted. Each unit of the practical
system had the dimensions of the corresponding electromagnetic unit and
differed from it in magnitude by a power of ten which, in the case of
voltage and resistance at least, was wholly arbitrary. The practical
units have the great advantage of convenient size and they are now
universally employed for technical measurements and computations.
Since they have been defined as arbitrary multiples of absolute units, they
do not, however, constitute an absolute system. Now the quantities
mass, length, and time are fundamental solely because the physicist has
found it expedient to raise them to that rank. That there are other
fundamental quantities is obvious from the fact that all electromagnetic
quantities cannot be expressed in terms of these three alone. The
restriction of the term “absolute” to systems based on mass, length, and
time is, therefore, wholly unwarranted; one should ask only that such a
system be self-consistent and that every quantity be defined in terms of
a minimum number of basic, independent units. The antipathy of
physicists in the past to the practical system of electrical units has been
based not on any firm belief in the sanctity of mass, length, and time,
but rather on the lack of self-consistency within that system.

Fortunately a most satisfactory solution has been found for this
difficulty. In 1901 Giorgi,! pursuing an idea originally due to Maxwell,
called attention to the fact that the practical system could be converted
into an absolute system by an appropriate choice of fundamental units.
It is indeed only necessary to choose for the unit of length the inter-

1 Grorei: Unitd Razionali di Elettromagnetismo, At dell’ A.E.I., 1801. An
historical review of the development of the practical system, including a report of the
action taken at the 1935 meeting of the International Electrotechnical Commission
and an extensive bibliography is given by Kennelly, J. Inst. Elec. Engrs., T8, 235
245, 1936. See alsc GLazemrook, The M.K.S. System of Electrical Units, J. Inst.
Elec, Engrs., T8, pp. 245-247.

meters/sec.
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national meter, for the unit of mass the kilogram, for the unit of time the
second, and as a fourth unit any electrical quantity belonging to the
practical system such as the coulomb, the ampere, or the ohm. From
the field equations it is then possible to deduce the units and dimensions
of every electromagnetic quantity in terms of these four fundamental
units. Moreover the derived quantities will be related to each other
exactly as in the practical system and may, therefore, be expressed in
practical units. In particular it is found that the parameter uo.must
have the value 4r X 10~7, whence from (1) the value of ¢ may be caleu-
lated. Inversely one might equally well assume this value of uo as a
fourth basic unit and then deduce the practical series from the field
equations. -

At a plenary session in June, 1935, the International Electrotechnical
Commission adopted unanimously the m.k.s. system of Giorgi. Certain
questions, however, still remain to be settled. No official agreement
has as yet been reached as to the fourth fundamental unit. Giorgi him-
self recommended that the ohm, a material standard defined as the
resistance of a specified column of mercury under specified conditions
of pressure and temperature, be introduced as a basic quantity. If
po = 4w X 1077 be chosen as the fourth unit and assumed dimensionless,
all derived quantities may be expressed in terms of mass, length, and
time alone, the dimensions of each being identical with those of the corre-
sponding quantity in the absolute electromagnetic system and differing
from them only in the size of the units. This assumption leads, however,
to fractional exponents in the dimensions of many quantities, a direct
consequence of our arbitrariness in clinging to mass, length, and time
as the sole fundamental entities. In the absolute electromagnetic sys-
tem, for example, the dimensions of charge are grams? - centimeters?, an
irrationality which can hardly be physically significant. These fractional
exponents are entirely eliminated if we choose as a fourth unit the
coulomb; for this reason, charge has been advocated at various times as a
fundamental quantity quite apart from the question of its magnitude.!
In the present volume we shall adhere exclusively to the meter-kilogram-
second-coulomb system. A subsequent choice by the I.E.C. of some
other electrical quantity as basic will in nowise affect the size of our units
or the form of the equations.?

18ee the discussion by Wavrror: Elekirotechnische Zeitschrift, Nos., 44-46, 1922.
Also SoMMERFELD: * Ueber die Electromagnetischen Einheiten,” pp. 157-165, Zeeman
Verhandelingen, Martinus Nijhoff, The Hague, 1935; Physik. Z. 86, 814-820, 1935.

2 No ruling has been made as yet on the question of rationalization and opinion
seems equally divided in favor and against. If one bases the theory on Maxwell’s
equations, it seems definitely advantageous to drop the factors 4r which in unrational-
ized systems stand before the charge and current densities. A rationalized system
will be employed in this book.
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To demonstrate that the proposed units do constitute a self-consistent
system let us proceed as follows. The unit of current in the m.k.s.
system is to be the absolute ampere and the unit of resistance is to be
the absolute ohm. These quantities are to be such that the work
expended per second by a current of 1 amp. passing through a resistance
of 1 ohm is 1 joule (absolute). If R is the resistance of a section of
conductor carrying a constant current of I amp., the work dissipated in
heat in ¢ sec. is

@) W = I’R¢ joules.

By means of a calorimeter the heat generated may be measured and thus
one determines the relation of the unit of electrical energy to the unit
quantity of heat. It is desired that the joule defined by (4) be identical
with the joule defined as a unit of mechanical work, so that in the electrical
as well as in the mechanical case

(5) 1 joule = 0.2389  gram-calorie (mean).

Now we shall define the ampere on the basis of the equation of continuity
(6), page 4, as the current which transports across any surface 1 coulomb
in 1sec. Then the ohm is a derived unit whose magnitude and dimensions
are determined by (4): ~

watt . kilogram - meter?

(6) 1 ohm =1 ampere? coulomb? - second’

since 1 watt is equal to 1 joule/sec. The resistivity of a medium is
defined as the resistance measured between two parallel faces of a unit
cube. The reciprocal of this quantity is the conductivity. The dimen-
sions of ¢ follow from Eq. (17), page 15.

1 _ 1 coulomb? - second
ohm - meter  ~ kilogram - meters

(7) 1 unit of conductivity =

In the United States the reciprocal ohm is usually called the mho,
although the name siemens has been adopted officially by the I.E.C.
The unit of conductivity is therefore 1 siemens/meter.

The volt will be defined simply as 1 watt/amp., or

watt kilogram - meter?
ampere coulomb - second?

® lvolt =1

Since the unit of current density is 1 amp./meter?, we deduce from the
relation J = ¢E that

watt _ 4 volt kilogram - meter

(9) 1unitof E =1 ampere - meter  meter ~  coulomb - second?
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The power expended per unit volume by a current of density J is there-
fore E - J watts/meter’. It will be noted furthermore that the product
of charge and electric field intensity E has the dimensions of force. Let a
charge of 1 coulomb be placed in an electric field whose intensity is
1 volt/meter. )

volt _ [ joule _ _ kilogram - meter
meter  meter second?

(10) 1 coulomb X 1

The unit of force in the m.k.s. system is called the newton, and is equiva-~
lent to 1 joule/meter, or 10% dynes.
The flux of the vector B shall be measured in webers,

11 P = j; B:-nda webers,

and the intensity of the field B, or flux density, may therefore be expressed
in webers per square meter. According to (25), page 8,

d® webers
12) J; E-ds=—5 second

The line integral j; ®E . ds is measured in volts and is usually called the

electromotive force (abbreviated e.m.f.) between the points a and b,
although its value in a nonstationary field depends on the path of integra-
tion. The induced e.m.f. around any closed contour C is, therefore,
equal to the rate of decrease of flux threading that contour, so that
between the units there exists the relation

weber
(13) 1 volt =1 second’
or
_ , joule _ . kilogram - meter?
14 - 1 weber =1 ampere  coulomb - second

It is important to note that the product of current and magnetic flux
is an energy. Note also that the product of B and a velocity is measured
in volts per meter, and is therefore a quantity of the same kind as E.

. _ 4 weber _ kilogram
(15) 1unit of B =1 meter? = coulomb - second
. _ 4 weber meter _ . volt .
(16) 1 unit of B |v| =1 Teter? socond — ! meter — 1 unit of {E[.

The units which have been deduced thus far constitute an absolute
system in the sense that each has been expressed in terms of the four
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basic quantities, mass, length, time, and charge. That this system is
identical with the practical series may be verified by the substitutions

(17) 1 kilogram = 102 grams, 1 meter = 102 centimeters,
1 coulomb = ; abcoulomb.

The numerical factors which now appear in each relation are observed
to be those that relate the practical units to the absolute electromagnetic
units. For example, from (6),

kilogram - meter? _ 10% grams - 10* centimeters?
1 = 3
(18) 1ohm =1 coulomb? - second 102 abcoulomb? - seconds
= 10° gbohms;
and again from (8),

kilogram - meter? _ 10° grams - 10* centimeters?
coulomb - second? 107! abcoulomb - second?
= 108 abvolts.

19) 1volt =1

The series must be completed by a determination of the units and
dimensions of the vectors D and H. Since D = ¢E, H = lB, it is
1

necessary and sufficient that ¢ and us be determined such as to satisfy
Eq. (2) and such that the proper ratio of practical to absolute units be
maintained. We shall represent mass, length, time, and charge by the
letters M, L, T, and Q, respectively, and employ the customary symbol [A]
as meaning “the dimensions of A.”” Then from Eq. (31), page 9,

20) j; D:.nda=gq coulombs
and, hence,
__ coulombs _ @
21) Pl = eterr — L7
_ _| D | _ coulombs _ QT
(22) [eo] = [KuE:l = volt - meter ML3

The farad, a derived unit of capacity, is defined as the capacity of a
conducting body whose potential will be raised 1 volt by a charge of
1 coulomb. It is equal, in other words, to 1 coulomb/volt. The
parameter € in the m.k.s. system has dimensions, and may be measured
in farads per meter. ’

By analogy with the electrical case, the line integral j; ’ H - ds taken
along a specified path is commonly called the magnetomotive force
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(abbreviated m.m.f.). In a stationary magnetic field
(23) j; H-ds=1 amperes,

where I is the current determined by the flow df charge through any
surface spanning the closed contour C. If the field is variable, I must
include the displacement current as in (28), page 9. According to (23)
a magnetomotive force has the dimensions of current. In practice,
however, the current is frequently carried by the turns of a coil or winding
which is linked by the contour C. If there are n such turns carrying a
current I, the total current threading C is nl ampere-turns and it is

customary to express magnetomotive force in these terms, although -

dimensionally = is a numeric.
(24) [m.m.f.] = ampere-turns,
whence

25) [H] = ampere-turns _

9.
meter LT

It will be observed that the dimensions of D and those of H divided by a
velocity are identical. For the parameter uo we find

I B ] _ wvolt-second _ ML
(26) [1o] = [K—MT{] ~ ampere - meter  Q?

As in the case of e it is convenient to express o in terms of a derived
unit, in this case the henry, defined as 1 volt-second/amp. (The henry
is that inductance in which an induced e.m.f. of 1 volt is generated when
the inducing current is varying at the rate of 1 amp. /sec.) The parameter
o may, therefore, be measured in henrys per meter.

From (22) and (26) it follows now that

L Vit
@7) [E] ST

and hence that our system is indeed dimensionally consistent with
Eq. (2). Since it is known that in the rationalized, absolute c.g.s.
electromagnetic system uo is equal in magnitude to 4, Eq. (26) fixes also
its magnitude in the m.k.s. system.

am - centimeters _ 10-3 kilogram - 10—% meter
abcoulombs? 102 coulombs?

(28) po = 4x &

or

kilogram - meters _ 1.257 X 10 henry

- -
(29) w = 4r X 10 coulombs? meter
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The appropriate value of ¢ is then determined from

1 _ 5998 x 108 Meters

@) c=
V €opo second

to be

B lomb? - seconds?
30) € = 8.854 X 101252 - —1, farad
(30) e kilogram - meter? 8.854 X 107 meter

It is frequently convenient to know the reciprocal values of these factors.

1 meters 1
31) — =0.795 e~ = meters
(31) o 958 X 10 henry p” 0.1129 X 1012 o

and the quantities

(32) £ — 376.6 ohms, 2 = 2,655 X 10~ mho
€0 Mo ’
recur constantly throughout the investigation of wave propagation.
. In Appendix I there will be found a summary of the units and dimen-
sions of electromagnetic quantities in terms of mass, length, time, and
charge.

THE ELECTROMAGNETIC POTENTIALS

1.-9. Vector and Scalar Potentials.—The analysis of an electromagnetic
ﬁeld is often facilitated by the use of auxiliary functions known as poten-
tials. At every ordinary point of space, the field vectors satisfy the

system
B
I vVXE+ Frie 0,

aD
3t

(III) V- B = 0,

(I vx H—- =], V) v-D = p.

According to (ITI) the field of the vector B is always solenoidal. Conse-
quently B can be represented as the curl of another vector A,.

1) B =V X A,

However A, is not uniquely defined by (1); for B is equal also to the curl
of some vector A,

where
®) | A=a-wy,

end ¢ is any arbitrary scalar function of position.
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1 now B is replaced in (I) by either (1) or (2), we obtain, respectively,

| oAo) _ aAY _
(4) vx(E+ Y = 0, VX(E-l-at = 0.
A, A . .
Thus the fields of the vectors E - 5 and E + F irrotational and
equal to the gradients of two scalar functions ¢, and ¢.
— e, — Ao
(5) E= —V¢ Era
oA
(6) E=—-V¢p — o
The functions ¢ and ¢, are obviously related by
_ o,
(M ¢ = ¢+ 5

The functions A are vector potentials of the field, and the ¢ are scalar
potentials. A, and ¢, designate one specific pair of potentials from which
the field can be derived through (1) and (5). An infinite number of
potentials leading to the same field can then be constructed from (3)
and (7). ‘

Let us suppose that the medium is homogeneous and isotropic, and
that ¢ and u are independent of field intensity.

(€)) D = ¢E, B = uH.
In terms of the potentials
- 9A 1 \
9) ——e(v¢+at), H—vaA,
which upon substitution into (II) and (IV) give
2
(10) VXV xA+uvi® By,
0A 1
@11 V2¢+V'W- —oe

All particular solutions of (10) and (11) lead to the same electromagnetic
field when subjected to identical boundary conditions. They differ
among themselves by the arbitrary function . Let us impose now upon
A and ¢ the supplementary condition

12) V'A+pe%¢t—)=0.

To do this it is only necessary that y shall satisfy
Iy 3¢,

@13) Vﬁb—ﬂéa—tz'=V‘Ao+#€3f)
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where ¢, and A, are particular solutions of (10) and (11). The potentials
¢ and A are now uniquely defined and are solutions of the equations

2
19 VXVXA—VV-A—i-pe%—;::”L
¢ _ 1
2.4 e __ _ =
(15) Vig HE 3t ep.

Equation (14) reduces to the same form as (15) when use is made of
the vector identity

(16) VXVXA=VV-A—V.VA.

The last term of (16) can be interpreted as the Laplacian operating on
the rectangular components of A. In this case .
2

an VIA — ue ‘;—t‘? —
The expansion of the operator V. VA in curvilinear systems will be
discussed in Sec. 1.16, page 50.

The relations (2) and (6) for the vectors B and E are by no means
general. To them may be added any particular solution of the homo-
geneous equations

(Ia) v><E+%3 —0, (Illa) V-B =0,

(Ila) Vv x H — %) —0, (IVa) V-D =o.
From the symmetry of this system it is at once evident that it can be

satisfied identically by

) )
(18) D= —VxA* H=_V¢*— "g‘t )
from which we construct
»
(19) — —2vxA% B-= —y(Vd:*-i—% :

The new potentials are subject only to the conditions
JZA*

V2A* - peth— = 0,
62 *

(20) vig* — ue 2L =0,
6 L

. * _— =
Ve A* + pue at 0.
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A general solution of the inhomogeneous system (I) to (IV) is, therefore,

*
(21) B = VXA—u§g—t—nV¢*
(22) E——v¢—%—‘?—elv5<A*

provided x and e are constant.

The functions ¢* and A* are potentials of a source distribution which
is entirely external to the region considered. Usually ¢* and A* are put
equal to zero and the potentials of all charges, both distant and loeal,

- are represented by ¢ and A.

At any point where the charge and current densities are zero a
possible field is ¢ = 0, Ay = 0. The function ¢ is now any solution
of the homogeneous equation

2

%
(23) vz\l/ — M€ a—tz =
Since at the same point the scalar potential ¢ satisfies the same equation,
¥ may be chosen such that ¢ vanishes. In this case the field can be
expressed in terms of a vector potential alone.

(24) B=vxA, E=—%—‘?,
(25) va—ye%t‘:‘=o, V-A=0.

Concerning the units and dimensions of these new quantities, we
note first that E is measured in volts/meter and that the scalar potential
¢ is therefore to be measured in volts. If ¢ is a charge measured in
coulombs, it follows that the product ¢¢ represents an energy expressed
in joules. From the relation B = ¥V X A it is clear that the vector
potential A may be expressed in webers/meter, but equally well in either
volt-seconds/meter or in joules/ampere. The product of current and
vector potential is therefore an energy. The dimensions of A* are found
to be coulombs/meter, while ¢* will be measured in ampere-turns.

1.10. Homogeneous Conducting Media.—In view of the extreme
brevity of the relaxation time it may be assumed that the density of
free charge is always zero in the interior of a conductor. The field
equations for a homogeneous, isotropic medium then reduce to

@) vxE+2 =, (I1b) V-B = 0,

) vx H-L2 _E=o,

3 (IVe) v.-D = 0.
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We are now free to express either B or D in terms of a vector potential.
In the first alternative we have

A

(26) B=vx4 E=-vs—

If the vector and scalar potentials are subjected to the relation
@) VoAt ueld g =

a possible electromagnetic field may be constructed from any pair of
solutions of the equations

92A JA
(28) va — M€ —( 6t2 - uaTt = 0,
o2 ]
(29) V2¢p — ue 6; - uo 6‘? 0.

As in the preceding paragraph one will note that the field vectors are

invariant to changes in the potentials satisfying the relations
oy
(3™ ¢=¢°+6_t’ A=Ay -V,
where &0, Ay are the potentials of a possible field and ¢ is an arbitrary
scalar function. In order that A and ¢ satisfy (27) it is only necessary
that ¢ be subjected to the additional condition
a a

(81) 'Vzil'—uea—ztf- a‘f_v Ao+ue—+w¢o
To a particular solution of (31) one is free to add any solution of the
homogeneous equation

M _ ..

(32) Vi) — pe—5 at2 3t

Frequently it is convenient to choose ¢ such that the scalar potential
vanishes. The field within the conductor is then determined by a single
vector A.

(33) B=VXA, E——"a—‘:‘,
X PA  9A
2 - —_ —_ = . =
{34) . VA — pe—— Fril LAy 0, v-A=0.
The field may also be defined in terms of potentials ¢* and A* by
(35) b= _VXA*) H= _v‘b*—%-:A‘
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If ¢* and A* are to satisfy (28) and (29), it is necessary that they be

related by

6¢"’
E

The field defined by (35) is invariant to all transformations of the poten-
tials of the type

(36) voA* 4+ pe 22 =

Wy ar=ar-w,

@7 ot = oF +——
where as above ¢¥F and A} are the potentials of any possible electro-
magnetic field. To ensure the relation (36) it is only necessary that y*
be chosen such as to satisfy

A R RO L.

* __
(38) VT e ot

Finally, by a proper choice of ¢* the scalar potential ¢* may be made
to vanish.

*
(39) D=-vx4AY, H=-2"_0
27 # *
(40) VZA*—#eaa!;—M%=O, V.A* =0

1.11. The Hertz Vectors, or Polarization Potentials.—We have seen
that the integration of Maxwell’s equations may be reduced to the
determination of a vector and a scalar potential, which in homogeneous
media satisfy one and the same differential equation. It was shown by
Hertz! that it is possible under ordinary conditions to define an electro-
magnetic field in terms of a single vector function.

Let us confine ourselves for the present to regions of an isotropic,
homogeneous medium within which there are neither conduction currents
nor free charges. The field equations then reduce to the homogeneous
system (Ia)-(IVa). We assume, for reasons which will become apparent,
that the vector potential A is proportional to the time derivative of a

vector Il.

ol
(41) A = pe 5
Consequently,
oIl oTI
42) B—#vaa—t) E= —V(b—#e?t?;

1 HerTz, Ann. Physik, 86, 1, 1888. The general solution is due to Righi: Bologna
Mem., (5) 9, 1, 1901, and 11 Nuovo Cimento, (5) 2, 2, 1901.
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and, when in turn this expression for E is introduced into (Ila), it is
found that

d

at(VxVXH+V¢+#ean)=0-

(43) =

We recall that at points where there is no charge, the scalar function ¢
is wholly arbitrary so long as it satisfies an equation such as (23). In
the present instance it will be chosen such that

(44) ¢=—V-.II.
Then upon integrating (43) with respect to the time, we obtain

(45) VXVXID— VYV I+ pe—- o = constant.

ot?

The particular value of the constant does not affect the determination of
the field and we are therefore free to place it equal to zero. Equation
(IVa) is also satisfied, for the divergence of the curl of any vector vanishes
identically. Then we may state that every solution of the vector equation
oax

(46) VXVXH— VY I+ ey =0

determines an electromagnetic field through

oI

E=vv. II--—pueat2

47) B = uev x o0
i
The condition that ¢ shall satisfy (23) is fulfilled in virtue of (46). One
may replace (46) by
I
(48) VI — pe — Froa = 0,
provided V?2is understood to operate on the rectangular components of II.
Since the vector D as well as B is solenoidal in a charge-free region,
an alternative solution can be constructed of the form

*
(49) av=peZh v = —vem,

* P
on H=VV'II*—peaH:

(50) D = —#ev X — at a—t2'

where IT* is any solution of (46) or (48).

From these results we conclude that the electromagnetic field within
a region throughout which ¢ and u are constant, p and J equal to zero,
may be resolved into two partial fields, the one derived from the veetor It
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and the other from the vector IT*. The origin of these fields lies exterior
to the region. To determine the physical significance of the Hertz
vectors it is now necessary to relate them to their sources; in other words,
we must find the inhomogeneous equations from which (48) is derived.

Let us express the vector D in terms of E and the electric polariza-
tion P. According to (6), page 11, D = ¢E + P. Then in place of
(Ila) and (IVa), we must now write

(51) VXH- oo, V-E=—€%V-P.

It may be verified without difficulty that these two equations, as well
as (Ie) and (IIla), are still identically satisfied by (47), provided only
that € be replaced by ¢ and that IT be now any solution of

R0 | 1

(52) V“’II — ME€g W = _é_o
The source of the vector TI and the electromagnetic field derived from it is a
distribution of electric polarization P. In due course we shall interpret
the vector P as the electric dipole moment per unit volume of the medium.
Since H is associated with a distribution of electric dipoles, the partial
field which it defines is sometimes said to be of electric type, and IX itself
may be called the electric polarization potential.

In like manner it can be shown that the field associated with IT* is
set up by a distribution of magnetic polarization. Aeccording to (6),
page 11, the vector B is related to H by B = go(H + M), which when
introduced into (Ia) and (I1la) gives

(53) VXE+#0%=—[I.0%: vV -H= —-Vv-M.

Then these equations, as well as (IIa) and (IVa), are satisfied identically
by (50) if we replace there u by po and prescribe that IT* shall be a
solution of

17 ¥
(54) VIHI* — e 66% = —M.
We shall show later that the polarization M may be interpreted as the
density of a distribution of magnetic moment. The partial field derived
from I* may be imagined to have its origin in magnetic dipoles and is
said to be a field of magnetic type.

The electric polarization P may be induced in the dielectric by the
field E, but it may also contain a part whose magnitude iscontrolled
by wholly external factors. In the practical application of the theory
one is interested usually only in this independent part Py, which will be
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shown to represent the electric moment of dipole oscillators activated by
external power sources. The same is true for the magnetic polarization,
To represent these conditions we shall write (6), page 11, in the modified
form

(55) D = E + P, =%B — M,

in which Py and M, are prescribed and independent of E and H, and
where the induced polarizations of the medium have again been absorbed
into the parameters e and p. Then the electromagnetic field due to these
distributions of Py and M, is determined by

91 orT*
(56) E—VV'H—,UEW—,UVXT)
on ouI*
(57) H=€V'XW+VV'H*—,UEW}
when I and II* are solutions of
Lkt 1 ouar*
(58) Vil — M€ W = —; Po, VZII* - [LGW = —Mo.

In virtue of the second of Egs. (58) and of the identity (16) we may alsa
write (57) as
oI1

(59) H=¢VX— +VXVxI*— M,

Since B = V X A, it is evident from this last relation that the vector
potential A may be derived from the Hertzian vectors by putting

on
(60) A=,UGW+,UVXH*'—V\(/,
where y is an arbitrary scalar function. The associated potential ¢ is

(61) o=-v.m+%
at
with ¢ subject only to the condition that it satisfy

(62) . Vi) — ue %‘f = 0.

The extension of these equations to a homogeneous conducting
medium follows without difficulty. The reader will verify by direct
substitution that the system (Ib)—(IVb), in a medium which is free of
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Jized polarization Py and M, is satisfied by

*
(63) E=VXVXI— ,;vxag

om .

(64) H=v X ea—t-l—a'l'l + VXV XIIO*
VXVXII~— VV~II-I—ye +ya'n=0,

ot ol

(65) 2n* an*
VXVXIO*—VV. H*-l—p,e T +W7=0

1.12. Complex Field Vectors and Potentials.—It has been shown by
Silberstein, Bateman, and others that the equations satisfied by the

fields and potentials may be reduced to a particularly compact form by -

the construction of a complex vector whose real and imaginary parts are
formed from the vectors defining the magnetic and electric fields.! The
procedure has no apparent physical significance but frequently facilitates
analysis.

Consider again a homogeneous, isotropic medium in which D = ¢E,
B = sH. If now we define Q as a complex field vector by

(66) Q =B + iVekE,
the Maxwell equations (I)—(IV) reduce to

(67) vxQ+ivaR-u, v-Q=iyE,

The vector operation V X Q may be eliminated from (67) by the
simple expedient of taking the curl of both members. By the identity
(16) we obtain

(68) vV-Q = viQ +ivav x % = uy x J,

which, on replacing the curl and divergence of Q by their values from
(67), reduces to

(69) VQ — e#;:g——#(VXJ—i\/e?g—g—i%Vp)-
o

When this last equation is resolved into its real and imaginary com-

! SILBERSTEIN, Ann. phys., 22, 24, 1907. Also Phil. Mag. (6) 23, 790, 1912.
BaTEMAN, “Electrical and 0pt1ca.l Wave Motion,” Chap. I, Cambndge University
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ponents, one obtains the equations satisfied individually by the vectors
E and H.
J?H

(70) VH — ey —, e -vXx]J,
o’E 9
(71) sz—G#W':#ag"l— V

Next, let us define Q in terms of complex vector and sealar potentials
L and & by the equation

(72) Q=VxL-— ive‘p% — iV euve®,
subject to the condition
(73) V-L+ad=o

Tt will be verified without difficulty that (72) is an integral of (67) pro-
vided the complex potentials satisfy the equations

%L

(74) VL — Hom = —uJ,
9%2d 1
(75) Vi — WHom = TP
If the real and imaginary parts of these potentials are written in the
form
(76) L=A—i\/£—‘A*, @=¢—i$¢*,

and substituted into (72), one finds again after separation of reals and
imaginaries the general expressions for the field vectors deduced in
Eqgs. (21) and (22).

If the free currents and charges are everywhere zero in the region
under consideration, Eq. (67) reduces to
7 va+1:\/;%=o, v.Q=0.
The electromagnetic field may now be expressed in terms of a single
complex Hertzian vector T.

(78) ’ Q= p,eVX +z\/_vxvxr,

where T is any solution of

2
(79) v — e,,%g = 0.
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If, finally, I is defined as
(80) r=I1- z\/eE n*

‘and substituted into (78), one finds again after separation into real and
imaginary parts exactly the expressions (47) and (50) for the electric
and magnetic field vectors.

When the medium is conducting, the field equations are no longer
symmetrical and the method fails. The difficulty may be overcome
if the field varies harmonically. The time then enters explicitly as a
factor such as et After differentiating with respect to time, the
system (Ib)—(IVbd) may be made symmetrical by introducing a complex

snductive capacity € = e t ¢ g-

BOUNDARY CONDITIONS

1.13. Discontinuities in the Field Vectors.—The validity of the field
equations has been postulated only for ordinary points of space; that is
to say, for points in whose neighborhood the physical properties of the
medium vary continuously. However, across any surface which bounds
one body or medium from another there occur sharp changes in the
parameters ¢, p, and o. On a macroscopic scale these changes may
usually be considered discontinuous and hence the field vectors themselves
may be expected to exhibit corresponding discontinuities.

Let us imagine at the start that the surface S which bounds medium
(1) from medium (2) has been replaced by a very thin transition layer
within which the parameters €, g, ¢ vary rapidly but continuously from
their values near S in (1) to their values near 8 in (2). Within this
layer, as within the media (1) and (2), the field vectors and their first
derivatives are continuous, bounded functions of position and time.
Through the layer we now draw a small right cylinder, as indicated in
Fig. 2a. The elements of the cylinder are normal to S and its ends lie
in the surfaces of the layer so that they are separated by just the layer
thickness Al. Fixing our attention first on the field of the vector B, we

have
¢)) § B.nda =0,

when integrated over the walls and ends of the cylinder. If the base,
whose area is Aa, is made sufficiently small, it may be assumed that B
has a constant value over each end. Neglecting differentials of higher
order we may approximate (1) by

¥)) (B - n; + B . n;)Aa + contributions of the walls = 0.

=

¥

R
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The contribution of the walls to the surface integral is directly pro-
portional to Al. Now let the transition layer shrink into the surface S.
In the limit, as Al — 0, the ends of the eylinder lie just on either side
of S and the contribution from the walls becomes vanishingly small.
The value of B at a point on S in medium (1) will be denoted by B,, while

D eppy.oy
Fia. 2a.—For the normal boundary condition.

the corresponding value of B just across the surface in (2) will be denoted

by B.. We shall also indicate the positive normal to S by a unit vector

n drawn from (1) into (2). According to this convention medium (1)

lies on the negative side of S, medium (2) on the positive side, and

n; = —n., Then as Al— 0, Aa— 0,

(3) (B2 — By) +n =0;

the transition of the normal component of B across any surface of discon-
tinuity in the medium is continuous. Equation (3) is a direct consequence
of the condition V - B = 0, and is sometimes called the surface divergence.
@ equ,.0, 5 n
-
S i S

n, ¢
D epuy.0y
Fig. 2b.—For the tangential boundary condition.

The vector D may be treated in the same manner, but in this case
the surface integral of the normal component over a closed surface is
equal to the total charge contained within it.

4) §D-nda=q.

The charge is distributed throughout the transition layer with a den-
sity p. As the ends of the cylinder shrink together, the total charge ¢
remains constant, for it cannot be destroyed, and

(5) g = p Al Aa.

In the limit as Al — 0, the volume density p becomes infinite. It is then
convenient to replace the product p Al by a surface density w, defined as
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the charge per unit area. The transition of the normal component of the
vector D across any surface S is now given by

(6) (Dz — D1) ‘D = w.

The presence of a layer of charge on S results tn an abrupt change in the
normal component of D, the amount of the discontinuity being equal to the
surface density measured in coulombs per square meter.

Turning now to the behavior of the tangential components we replace
the cylinder of Fig. 2a by a rectangular path drawn as in Fig. 2b. The
sides of the rectangle of length As lie in either face of the transition layer

and the ends which penetrate the layer are equal in length to its thick-

ness Al. This rectangle constitutes a contour Cp about which

9B
7) LOE-ds+L°§-noda—0,

where S, is the area of the rectangle and n, its positive normal. The
direction of this positive normal is determined, as in Fig. 1, page 8, by
the direction of circulation about Coy. Let =1 and x: be unit vectors in
the direction of circulation along the lower and upper sides of the rec-
tangle as shown. Neglecting differentials of higher order, one may
approximate (7) by

(8) (E:=1+ E- =) As + contributions from ends = —% - g As Al.
As the layer contracts to the surface S, the contributions from the seg-
ments at the ends, which are proportional to Al, become vanishingly
small. If n is again the positive normal to S drawn from (1) into (2),
we may define the unit tangent vector « by

(9) T = Np X 1.
Since
(10) ngXn-E=n,-nXE,

we have in the limit as Al — 0, As — 0,

11) ng - [n X (E; — E1) + BEIO (% Al)] = 0.

The orientation of the rectangle — and hence also of mo — is entirely
arbitrary, from which it follows that the bracket in (11) must equal
Zero, or

B

Al—0 Ot

s~

s e
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The field vectors and their derivatives have been assumed to be bounded;
consequently the right-hand side of (12) vanishes with Al

(13) n X (E; — E)) = 0.

The transition of the tangential components of the vector E through a surface
of discontinuity 7s conlinuous.

The behavior of H at the boundary may be deduced immediately
from (12) and the field equation

aD
(14) LH-ds—Loa—t-n.,da=fs°]-noda.

We have
(15) n X (H: — Hy) = lim <@ + J) Al
Al—-0 ot

The first term on the right of (15) vanishes as Al — 0 because D and its
derivatives are bounded. If the current density J is finite, the second
term vanishes as well. It may happen, however, that the current
I = J:n, As Al through the rectangle is squeezed into an infinitesimai
layer on the surface S as the sides are brought together. It is con-
venient to represent this surface current by a surface density K defined
as the limit of the product JAlas Al -0and J— «. Then

(16) n X (H2 - Hl) = K.

When the conductivities of the contiguous media are finite, there can be
no surface current, for E is bounded and hence the product ¢E Al van-
ishes with Al. In this case, which is the usual one,

a7 n X (H, — H;) =0, (finite conductivity)..

Not infrequently, however, it is necessary to assume the conductivity
of a body to be infinite in order to simplify the analysis of its field. One
must then apply (16) as a boundary condition rather than (17).
Summarizing, we are now able to supplement the field equations by
four relations which determine the transition of an electromagnetic
field from one medium to another separated by a surface of discontinuity.

n'(Bz—B1)=O, DX(HZ_HI)=K)

(18) n X (E; — Ep) = 0, n-(D; — D) = w.

From them follow immediately the conditions for the transition of the
normal components of E and H.,

(19) n- (Hz bt E—l Hl) = 0. n- (Ea — S El) (:’-'
M2 €2 €2
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Likewise the tangential components of D and B must satisfy

(200 =nX (Dz - e—2D1> =0, =nXx (132 — -E’-m) - wK.
1

€1
COORDINATE SYSTEMS
1.14. Unitary and Reciprocal Vectors.—It is one of the principal
advantages of vector calculus that the equations defining properties
common to all electromagnetic fields may be formulated without reference
to any particular system of coordinates. To determine the peculiarities
that distinguish a given field from all other possible fields, it becomes

uecessary, unfortunately, to resolve each vector equation into an equiva-

lent scalar system in appropriate coordinates.
In a given region let

49 ul = fl(x: Y, 2), u? = fz(x: Y, Z), u® = f3(x; Y, 2),

be three independent, continuous, single-valued functions of the rec-
tangular coordinates z. ¥, 2. These equations may be solved with respect
to z, ¥, 2, and give

(2) T = ﬁol(uly uzy u3): y= 902(“1: uzy u3): z = 903(“1} uzy u3):

three functions which are also independent and continuous, and which
are single-valued within certain limits. In general the functions ¢; as
well as the functions f; are continuously differentiable, but at certain
singular points this property may fail and due care must be exercised in
the application of general formulas.

With each point P(z, y, 2) in the region there is associated by means of
(1) a triplet of values u!, u?, u?; inversely (within limits depending on the
boundaries of the region) there corresponds to each triplet u!, w? w® a
definite point. The functions %!, u?, u® are called general or curvilinear
coordinates. 'Through each point P there pass three surfaces

3) u! = constant, u? = constant, u3 = constant,

called the coordinate surfaces. On each coordinate surface one coordi-
nate is constant and two are variable. A surface will be designated by
the coordinate which is constant. Two surfaces intersect in a curve,
called a coordinate curve, along which two coordinates are constant and
one is variable. A coordinate curve will be designated by the variable
coordinate.

Let r denote the vector from an arbitrary origin to a variable point
P(z, y, 2). The point, and consequently also its position vector r, may
be ~onsidered functions of the curvilinear coordinates %', u?, 4%

€] r = r(ul, u?, ud.
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A differential change in r due to small displacements along the coordinate
curves is expressed by ‘

_ O g O ey 0T s
(5) dr = auldu +au2du +W;du.

Now if one moves unit distance along the u'-curve, the change in r is
directed tangentially to this curve and is equal to or/dul. The vectors

_or _ or _ or
T MTer T e

are known as the unitary vecfors associated with the point P. They
constitute a base system of reference for
all other vectors associated with that
particular point.

(7) dr = a; dut + a; du® + asdud.

It must be carefully noted that the
unttary vectors are not necessarily of unit
length, and their dimensions will depend
on the nature of the general coordinates.
The three base vectors ai, az, a; de-
fine a parallelepiped whose volume is

(6) a

]

(8) V=a;-(a; X a;) = a,- (a3 X 1) Fic. 3.—Base vectors for a curvilinear
= az- (a1 X az). coordinate system.

The three vectors of a new triplet defined by

1 1 1
9 at= v (a2 X as), al= 7 (as X ay), ad = v (a1 X as),
are respectively perpendicular to the planes determined by the pairs
(as asz), (as a1), (a1, @2). Upon forming all possible scalar products of
the form ai. a; it is easy to see that they satisfy the condition

(10) ai- & = 5;-,',

where §; is a commonly used symbol denoting unity when ¢ = j, and
zero when ¢ ¢ j. The unitary vectors can be expressed in terms of the
system al, a?, a® by relations identical in form.

1
(1) a; =@ xa’), a= %(ax X al), &= %(a1 X a?).

Any two sets of noncoplanar vectors related by the Eqgs. (8) to (11) are
said to constitute reciprocal systems. The triplete al, a%, a® are called
rectprocal unitary vectors and they may serve as a base system quite
as well ag the unitary vectors themselves.
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If the reciprocal unitary vectors are employed as a base system, the
differential dr will be written

(12) dr = aldu, -+ a? dusz -+ a® dus.

The differentials duy, dus, dus are evidently components of dr in the direc-
tions defined by the new base vectors. The quantities %, us, us are
functions of the coordinates u', u?, u?, but the differentials dui, dus, dus
are not necessarily perfect. On the contrary they are related to' the
differentials of the coordinates by a set of linear equations which in
generai are nonintegrable. Thus equating (7) and (12), we have

3 3
(13) dr = 2 a;duf = 2 a? du;.
i=1 i=1
Upon scalar multiplication of (13) by a‘ and by a; in turn, we find, thanks
to (10):
3 3
(14) du; = 2 a; - a; du’, dut = 2 a‘- a’ du;.
i=1 i=1

It is customary to represent the scalar products of the unitary vectors

and those of the reciprocal unitary vectors by the symbols

(15) gi = i 8; = i,
(16) gi = al-a = g~

The components of dr in the unitary and in the reciprocal base systems
are then related by

3 3
an du, = 2 gi: du?, dut = 2 g du;.
i=1 j=1

A fixed vector F at the point P may be resolved into components
either with respect to the base system a,, as, as, or with respect to the
reciprocal system al, a2, ad.

3 3
(18) F =3 fa:= 2 fai.
tm j=1

The components of F in the unitary system are evidently related to those
in its reciprocal system by

3
£="73 g

i=1

. 3
(19) fi= 2; giif',

and in virtue of the orthogonality of the base vestors a; with respect to
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the reciprocal set a* as expressed by (10), we may also write
(20) f"=F-a", f,~=F-a,-.

It follows from this that (18) is equivalent to

(21) F = i (F - ad)a; = 23; (F - a))a’.

=1 i=1

The quantities f* are said to be the contravariani components of the
vector F, while the components f; are called covariani. A small letter
has been used to designate these components to avoid confusion with the
components Fy, F,, F; of F with respect to a base system coinciding with
the a; but of unit length. It has been noted previously that the length
and dimensions of the unitary vectors depend on the nature of the
curvilinear coordinates. An appropriate set of unif vectors which, like
the unitary set a;, are tangent to the ui-curves, is defined by

a;

. 1 . 1 1
(22) 1; = = a1 13 = ———a8a is = ——
va-a VYV gu ’ ? vV g22 » vV Gss

a3y

and, hence,

(23) F = Fiiy + Fids + Fiis,
with
(24) F; = "4 giifi.

The F; are of the same dimensions as the vector F itself.

The vector dr represents an infinitesimal displacement from the point
P(u', w* u®) to a neighboring point whose coordinates are u! -+ dul,
u®? 4 du?, u® - du®. The magnitude of this displacement, which con-
stitutes a line element, we shall denote by ds. Then

3 3 3 3
(25) ds?=dr-dr = 2; > a8y duidu = 2; >, at - af du; du;
3=] joal gm] fm]

or, in the notation of (15) and (16),

. 3 3
(26) ds? = 2 gii dw dw = 2 g% dw; du;,

ti=1 ti=1

The gi; and g/ appear here as coefficients of two differential quadratic
forms exvressing the length of a line element in the space of the general
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coordinates w4 or of its reciprocal set ;. They are commonly called the
metrical coefficients.

It is now a relatively simple matter to obtain expressions for elements
of are, surface, and volume in a system of curyilinear coordinates. Let
ds; be an infinitesimal displacement at P(u!, u? u°) along the u!-curve.

d81 = [dS1l =YV Ju dul.
Similarly, for elements of length along the u?- and u3-curves, we have

(28) dsz = / 22 duz, ds; = V/ g33 dus.

Consider next an infinitesimal parallelogram in the u!-surface bounded
by intersecting u* and w’-curves as

(27) ds, = a; dul,

an element is equal in magnitude to

(29) da, = |dSz X dSsl
= |as X aj| du? du?

= v/ (az X 8.3) . (az X 8.3) du? dus,
By a well-known vector identity

30) (a X b)-(cxd)
=(a-c)(b-d) — (a-d)(b-c),

where a, b, ¢, d are any four vectors,
Fig. 4—Element of area in the ul-surface. and hence

(81) (az X a5) « (az X @3) = {az-as)(as* as) — (az- as)(as+ as)
= @203 — 9%3-

For the area of an element in the ul-surface we have, therefore,
(32) day = Vg — gis du? dud,

and similarly for elements in the u? and u’-surfaces,

(33) daz = Y/ 33011 — g;zu du? dul,
das = \/gugaz — gi du' dul.

Finally, a volume element bounded by coordinate surfaces is written as
(34) dv = ds; + ds; X ds; = a - az X asdul du? dud.
If now in (21) we let F = a; X a3, we have

(35) as X a; = (al-as X as)ar + (a?-a; X an)az + (a®- az x a3)ay

indicated in Fig. 4. The area of such-

e

e
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or, on replacing the a‘ by their values from (8) and (9),

a
a2, X & [(az X as-a; X as)ay +

(as X a1-ax X as)as + (a1 X az+a, X as)as].

(36) aj-a; X a; =

The quantities within parentheses can be expanded by (30) and the terms
arranged in the form

(87) (a1-az X @)% = a1+ af(az- a5)(as - as) — (a2~ as)(as * a1)]
+ a1- a(az- as)(as- a1)) — (az- as)(as- as)]
+ a:-asf(as - a;)(as - az) — (a»- az)(as + ar)l.

If finally the sealar products in (37) are replaced by their gi;, we obtain
as an expression for a volume element

(38) dv = Vg du' du? du?,
in which
J11 Ji12 G13
(39) g = |21 G222 Ga3-
J31 G322 @33

A corresponding set of expressions for the elements of are, area, and
volume in the reciprocal base system may be obtained by replacing the
g:; by the g%, but they will not be needed in what follows.

Clearly the coefficients gi; are sufficient to characterize completely
the geometrical properties of space with respect to any curvilinear system
of coordinates; it is therefore essential that we know how these coefficients
may be determined. To unify our notation we shall represent the
rectangular coordinates z, y, 2 of a point P by the letters z!, 22, z° respec-
tively. Then

(40) ds? = (dzY)? + (dz?)2 + (dz®)2
In this most elementary of all systems the metrical coefficients are
(41) gi = (s =1, 8;; = 0 when 7 5 7).

From the orthogonality of the coordinate planes and the definition (9),
it is evident that the unitary and the reciprocal unitary vectors are
identical, are of unit length, and are the base vectors customarily repre-~
sented by the letters i, j, k.

Suppose now that the rectangular coordinates are related functionally
to a set of general coordinates as in (2) by the equations

42) ! = z'(ul, u?, u¥), z? = z%(ul, ut, u?), z? = z3(ul, u? us.
) )
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The differentials of the rectangular coordinates are linear functions of the
differentials of the general coordinates, as we see upon differentiating
Eqgs. (42).

ozt ozl dxt
1 =9t 514 9 g0 & g8
dzrl = o] dul + auzdu + 6u3du’
ox? ox? dx?
2 — 1 - 2 b H
(43) dz? = 7l dul 4 o) du? + Eoe dud,

_ 0z, 92 ., 0T,

dzd = a—uldu + Wdu + ausdu.

According to (26) and (40)
3 3 3
(44) ds? = 2} > g dui dui =3 (da)?,
i=17=1 E=1

whence on squaring the differentials in (43) and equating coefficients
of like terms we obtain

. _ Ozlozl | 02?0z | 9x°dz?
9% = 5wiou T ouiow ' ouiow

(45)

1.16. The Differential Operators.—The gradient of a scalar funetion
o(ul, u2, u?) is a fixed vector defined in direction and magnitude as the
maximum rate of change of ¢ with respect to the cordinates. The
variation in ¢ incurred during a displacement dr is, therefore,

3
(46) dg = Vo-dr= > g—:;du‘.

i=1

Now the du’ are the contravariant components of the displacement vector
dr, and hence by (20),

(47) duf = a*-dr.
This value for du’ introduced into (46) leads to

3
(48) (V¢ — 2 al g—i,.) dr=0

i=1

and, since the displacement dr is arbitrary, we find for the gradient of a

scalar function in any system of curvilinear coordinates:

3

_ :9¢
(49) vé = 2 &5

t=1

In this expression the reciprocal unitary vectors constitute the base

B
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system, but these may be replaced by the unitary vectors through the
transformation

3
(50) ai = ga;.

The divergence of a vector function F(u!, u?, 4% at the point P may
be deduced most easily from its definition in Eq. (9), page 4, as the
limit of a surface integral of the normal component of F over a closed
surface, per unit of enclosed volume. Consider those two ends of the
volume element illustrated in Fig. 5 which
lie in u2-surfaces. The left end is located
at u? the right at u? 4 du?. The area
of the face at u?is (a1 X as)du! du3, the
order of the vectors being such that
the normal is directed outward, i.e., to
the left. The net contribution of these
two ends to the outward flux is, therefore,

(51) [F . (aa X 8.1) dut! du3]ua{_du:
+ [F - (a1 X a5) du? dul..,

the subseripts to the brackets indicating
that the enclosed quantities are to be
evaluated at u® 4 du’ and u? respective- Fic. 5.—Element of volume in a
ly. For sufficiently small values of du?, curvilinear coordinate system.

(51) may be approximated by the linear term of a Taylor expansion,

(52) 5o (F - 2y X & dut du? du),

a1 X as having been replaced by —a; X a;. Now by (21), (20), and
(37) we have

(53) F-aaxa1=F.a2(a2,a3XaI)=f2_\/§;
hence the contribution of the two ends to the surface integral is
(54) o3 (72 /g) dut du? du,

Analogous contributions result from the two remaining pairs of faces.
These are to be measured per unit volume; hence we divide by dv = Vg
du* du® du® and pass to the limit du' — 0, du?— 0, du®— 0, ensuring
thereby the vanishing of all but the linear terms in the Taylor expansion.
The divergence of a vector F referred to a system of curvilinear coordi-
nates is, therefore,

1 Q9 ,x
(55) Vo= S V0.
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The curl of the vector F is found in the same manner by calculating
the line integral of F around an infinitesimal closed path. According
to Eq. (21), page 7, the component of the curl in a direction defined
by 2 unit normal n is

L1
(56) (VXF)-n-gREJ;F-ds.

Let us take the line integral of F about the contour of a rectangular
element of area located in the ul-surface, as indicated in Fig. 6. The
sides of the rectangle are a, du? and a; du®. The direction of circulation

gsense of the positive u'-curve. The con-
tribution from the sides parallel to u3-curves
is

(F - a5 duPurpawr — (F - a5 dud)es;
from the bottom and top parallel to u2-
curves, we obtain

- (F L3 P du2)ua+dua + (F L3 P} d’uz)u:.

Approximating these differences by the
linear terms of a Taylor expansion, we
obtain for the line integral

Fia. 6.—Calculation of the curl
in curvilinear coordinates.

(57) [aiuz (F - a;) — aiu“ (F - az)] du? dus,

This quantity must now be divided by the area of the rectangle, or
+/(a; X as) - (a; X as) du?du® As for the unit normal n, we note that
the reciprocal vector a!, not the unitary vector a,, is always normal to the
ul-surface. Its magnitude must be unity; hence

al
Va-a

These values introduced into (56) now lead to

(58) n =

(59) (VXF)- ﬁ
1 J

ad
- Jud - - F *az) |le
V(@ X a3) - (az X a3) [auz (F - ay) au3< a )]
By (9) and (37)

(60) az X a5 = [a;+ (a2 X as)la! = v/gal;

is such that the positive normal is in the

T

VR
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hence (59) reduces to
(61) vxF-at=1[2 ®.a)—2 F.a]

Vg | 9u? s dut 2

The two remaining components of V X F are obtained from (61) by
permutation of indices. Then by (21)

3
(62) VXF =

T=

(v X F-ada,

Remembering that F - a; is the covariant component f;, we have for the
curl of a vector with respect to a set of general coordinates

_ L [(3 _ o _ o
63) VXF—\/Q[(auz > 1+(6u3 aul) &2
ofs _ ofr .
+ (a—u‘ W) as]
Finally, we consider the operation V¢, by which we must understand

V+:V¢o. We need only let F = V¢ in (55). The contravariant com-
ponents of the gradient are

3 3
. . ) 0
(64) FeFeai= Naiai 20 gl
=1 =
Then
. = Vy2 7 a¢
(65) ViVe == 2 2 3 (97 aw)

1.16. Orthogonal Systems.—Thus far no restriction has been imposed
on the base vectors other than that they shall be noncoplanar. Now it
happens that in almost all cases only the orthogonal systems can be
usefully applied, and these allow a considerable simplification of the
formulas derived above. Oblique systems might well be of the greatest
practical importance; but they lead, unfortunately, to partial differential
equations which cannot be mastered by present-day analysis,

The unitary vectors ay, a2, a; of an orthogonal system are by definition
mutually perpendicular, whence it follows that a’ is parallel to a; and
is its reciprocal in magnitude.

1 1

(66) at = a; = — a;.
a;-a; g

Furthermore

(67) 18, = &-a3; = a3+ a; = 0;
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hence g; = 0, when ¢ £ j. It is customary in this orthogonal case to
introduce the abbreviations

(68) hi=Ngun,  ha=Vga_  h=Vgum
.1 1
(69) A

The h; may be calculated from the formula

@ i () + () + G)

although their value is usually obvious from the geometry of the system.
The elementary cell bounded by coordinate surfaces is now a 1ectangular
box whose edges are

(71) dsy = hy du?, dsz = hg du?, dss = hs du?,

and whose volume is

(72) dv = hihohs dul! du? dus.

All off-diagonal terms of the determinant for g vanish and hence
(73) Vg = hikshs.

The distinction between the contravariant and covariant components
of a vector with respect to a unitary or reciprocal unitary base system is
essential to an understanding of the invariant properties of the differential
operators and of scalar and vector products. However, in a fixed refer-
ence system this distinction may usually be ignored. It is then con-
venient to express the vector F in terms of its components, or projections,
Fi, Fy, Fs on an orthogonal base system of unit vectors iy, iy, is. By (22)
and (66)

(74) & =hiy &= i
In terms of the components F; the contravariant and covariant com-
ponents are

(75) F=xF, fi=h.
Also

(76) ) F = Fii1 + Fii; 4 Fsis,
(77) i,’ . ik = 5,'5.

The gradient, divergence, curl, and Laplacian in an orthogonal system
of curvilinear coordinates can now be written down directly from the
results of the previous section.
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From (49) we have for the gradient

16¢

(78) Vo = h a 71

According to (55) the divergence of a vector F is

1 d d
(79) V.F = m [W (hzhapl) + a_uz (h3h1F?) + aiu"* (h1h2F3)]'

For the curl of F we have by (63)

() VXF=ir [auz (haFs) — o 3(hwz)]il+ﬁ[ia (haF'y)

~ 3al (haFa)] s + 55 7 [ i (F2) — 22 (thl)] i

It may be remarked that (80) is the expansion of the determinant

hiy  hedy  hgis
1 d d d

81) VXF=hlon s el

RiFy hoFy  hFs

Finally, the Laplacian of an nvariant scalar ¢ is

1 8 ([ hahs a¢> hshy 9¢ hihs 30\
2 = = | Y [ Y 09 1 2
(82) v ¢ h1h2h3 [au‘( hl dul h (*)u + 6u3 hs a_ui J.

By an invariant scalar is meant a quantity such as temperature or
energy which is invariant to a rotation of the coordinate system. The:
components, or measure numbers, F; of a vector F are scalars, but they
transform with a transformation of the base vectors. Now in the
analysis of the field we encounter frequently the operation

(83) VXVXF=VV.F—vVv.VF.

No meaning has been attributed as yet to V- VF. In a rectangular,
Cartesian system of coordinates z?, x2, x3, it is clear that this operation is
equivalent to

oF; | O\,
(8)  V.VF = V¥ = E(a(zl)z +5ms + a‘zza)z) i

" ¢£.e., the Laplacian acting on the rectangular components of F. In gener-
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alized coordinates Vv X V X F is represented by the determinant

1,
Fioha :
ad =
(85) VXV XF= Tul
h a
he ilz [au2 (hsf's) — ud (hWZ)]
1, 1,
by [ Y
9 9
Ju? ou’
Pt 0 Gy = 2 ey | | L (k) — 2 ()
hahy | 9ud VP ! dul 8 hihs u1 z uz( s

The vector V « VF may now be obtained by subtraction of (85) from the
expansion of VV.F, and the result differs from that which follows
a direct application of the Laplacian operator to the curvilinear com-
ponents of F.

1.17. The Field Equations in General Orthogonal Coordinates.—In
any orthogonal system of curvilinear coordinates characterized by the
coefficients &y, ks, hs, the Maxwell equations can be resolved into a set of
eight partial differential equations relating the scalar components of the
field vectors.

1 1. oB
ok L 09 73 (aFy) | + 7 = 0.
1., oB
@ [ o (hE1) — u1 (hsEs)_ + 72 =0.
B
hL [ S (B — u2 (B | + =
1[a 3 1 oD,
h—s[w h3H3)—a_,us(h2H2)_ _W—Jl.
1[a 1 oD
an Aty - 2 Gty | - e g
1[0 3 1 oD
ok s 0819 = g Ol | = 5 = a4
9 3 9 (hihaBs) = 0
III) u (hehsBy) + Fry (hshyB2) + F (hiheB;) = 0.

(V) 5 (hahaDs) + oo (hshaDs) + s (hahaDs) = haahe.
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It is not feasible to solve this system simultaneously in such a manner
as to separate the components of the field vectors and to obtain equations
satisfied by each individually. In any given problem one must make the
most of whatever advantages and peculiarities the various coordinate
systems have to offer.

1.18. Properties of Some Elementary Systems.—An orthogonal
coordinate system has been shown to be completely characterized by the
three metrical coefficients, hi, he, h;. These parameters will now be
determined for certain elementary systems and in a few cases the differ-
ential operators set down for convenient
reference.

1. Cylindrical Coordinates.—Let P’ be
the projection of a point P(z, y, ) on the
z-plane and r, 6 be the polar coordin-
ates of P’ in this plane (Fig. 7). The
variables

,
f\lt.
»N

0
™

\
W‘<
]
(3]

(86) ut=r, u? = 6, ud = 2,

NN
N
\

p

are called circular cylindrical coordin-

xl
ates. The3-r are related to t}.le rectan- Fr. 7—Coordinates of the circalar
gular coordinates by the equations cylinder.

(87) z = r cos 6, y = rsin §, z2 =z

The coordinate surfaces are coaxial cylinders of cirecular cross section
intersected orthogonally by the planes § = constant and z = constant.
The infinitesimal line element is

(88) ds?® = dr? 4 r2d6* + dz2,
whence it is apparent that the metrical coefficients are
(89) hy =1, hy =1, hs = 1.
If ¢ is any scalar and F a vector function we find:
_'P Loy, 'l’
- r 862 +
voF=226r)+ 16F2+a—i’
(90) (1 oF;  oF, oF, oFs
VXF=\3 ~ az) bt (5 ‘7)‘ [r 3 (72
_1ami],
r 30 | ™

1o ap\ 10y , oW
VZ‘[/-—;_-—(rar) g T
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2. Spherical Coordinates.—The variables
1) ul =r, ut = 4, ud = ¢,
related to the rectangular coordinates by the transformation
92) z = rsin 6 cos ¢, y=rsin 6 sinﬁda, z2=rcosé,

are called the spherical coordinates of the point P. The coordinate
surfaces, r = constant, are concentric spheres intersected by meridian
planes, ¢ = constant, and a family of cones, & = constant. The unit
vectors iy, iy i3 are drawn in the direc-

8
* tion of increasing r, 6, and ¢ such as to
constitute a right-hand base system, as
indicated in Fig. 8. The line element
z i is '
i
e (93) ds? = dr? + r2de?
g Wi, y . + r?sin? 9 d¢?,
X
: 7 whence for the metrical coefficients we
% ¥ \| obtain
(94) h1 = 1, hz =T,
1 hg = r sin 6.
x
Fra. 8.—8pherical coordinates. These values lead to
vy 1. . 1 oy
v"b_ar 1 a6 2+7‘E;1n0¢3d>
19 ., 3Fs
v F_—_ Fl)+rsn060(8m0F2)+rsm06¢
(95) 1 . an] [ 1 oF:.
vxF=rsinn9 %(smGFs) d¢ i+ sin 6 3¢
_2 (rFs)] i+ 1 [— (rFs) — %] iy
a¢ 3 awp 1 oy
- 2
v r26r +r2s1n060( n0 _i_r?sm”(h'y‘da2

3. Elliptic Coordinates.—Let two fixed points P; and P; be located at
2z = ¢ and £ = —¢ on the z-axis and let r; and r; be the distances of a
variable point P in the z-plane from P; and P,. Then the variables

(96) ul = §, ut =1, ud =z,
defined by equations
o7 £ = %"2, 7= "1_2‘6_7'2,

Sec. 1.18] PROPERTIES OF SOME ELEMENTARY SYSTEMS 53

are called elliptic coordinates. From these relations it is evident that

The coordinate surface, £ = constant, is a cylinder of elliptic cross
section, whose foci are P; and P;. The semimajor and semiminor axes
of an ellipse £ are given by

(99) a = ct, b=cvVE -1,

and the eccentricity is
¢c 1

The surfaces, 7 = constant, represent a family of confocal hyperbolic

x
R
Qlo
Ule
S
i
4 iz
/
v=37/2 T2 v=7/2
/ y
V=

Fig. 9.—Coordinates of the elliptic cylinder. Ambiguity of sign is avoided by placing
£ = cosh %, 7 = cos ».

cylinders of two sheets as illustrated in Fig. 9. The equations of these
two confocal systems are

v, 22y _
el e
from which -we deduce the transformation
(102} z=ct, y=cVE-DA-7), z=z

The variable 5 corresponds to the cosine of an angle measured from the
z-axis and the unit vectors iy, i; of a right-hand base system are therefore

(101)
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drawn as indicated in Fig. 9, with i; normal to the page and directed
from the reader.
The metrical coefficients are calculated from (102) and (70), giving

52 —_— ,12 }’:2 _= ,72
(103) - }1.1 = ﬁ, kz = c.‘ ,-i—'_—’lz-) ks = 1.

4. Parabolic Coordinates.—If r, ¢ are polar coordinates of a variable
point in the z-plane, one may define two mutually orthogonal families
of parabolas by the equations

(104) £ = 4/2rsin g, 7 = V/2r cos g

The surfaces, £ = constant and n = constant, are intersecting parabolic.

&=5

€=—5 7= -5
Fia. 10.—Parabolic coordinates.

cylinders whose elements are parallel to the z-axis as shown in Fig. 10.
The parameters

(105) ut = §, u? = 1, u = ~z

are called parabolic coordinates. Upon replacing r and ¢ in (104) by
rectangular coordinates we find

(106) p=vV@ty-z nr=vVi@+y+s,
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whence for the transformation from rectangular to parabolic coordinates
we have

(107) =i’ — &), y=#f& 2z=-z

The unit vectors i, and i, are directed as shown in Fig. 10, with i; normal
to the page and away from the reader. The calculation of the metrical
coefficients from (107) and (70) leads to

(108) hl = hz = vV Ez + 112, hs = 1.

5. Bipolar Coordinates.—Let Py and P; be two fixed points in any
z-plane with the coordinates (@, 0), (—a, 0) respectively. If ¢t is a
parameter, the equation

(109) (z — a coth £)2 4+ y? = a? csch? ¢,

describes two families of circles whose centers lie on the z-axis. These
two families are symmetrical with respect to the y-axis as shown in

O !.. 5.8
\\‘

o "y
SRR
Z HAT
g‘.;“;.{‘ﬁ\

D%

Fia. 11.—Bipolar coordinates.

Fig. 11. The point P, at (a, 0) corresponds to & = + «, whereas its
image P, at (—a, 0) is approached when £ = — . The locus of (109),
when ¢ = 0, coincides with the y-axis. The orthogonal set is likewise
a family of circles whose centers all lie on the y-axis and all of which pass
through the fixed points P, and P;. They are defined by the equation,

(110) z? 4 (y — a cot )2 = a%cscly,
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wherein the parameter 5 is confined to the range 0 < n < 2r. In order
that the coordinates of a point P in a given quadrant shall be single-
valued, each circle of this family is separated into two segments by the
points P; and P,. A value less than = is as_signed to the arc above the
z-axis, while the lower arc is denoted by a value of 4 equal to = plus
the value of 7 assigned to the upper segment of the same cirele.

The variables

(111) wl = § ut = g, w =z

y

are called bipolar coordinates. From (109) and (110) the transformation
to rectangular coordinates is found to be

_  asinh ¢ _ asin g _
112) == coshf—cosqg 7 Goshf—cosy =2

The unit vectors i; and i, are in the direction of increasing ¢ and 7 as
indicated in Fig. 11, while i; is directed away from the reader along the
z-axis. The calculation of the metrical coefficients yields

a

= coshf—cosy WL

(113) b1 = hs

6. Spheroidal Coordinates—The coordinates of the elliptic cylinder
were generated by translating a system of confocal ellipses along the
z-axis. The spheroidal coordinates are obtained by rotation of the
ellipses about an axis of symmetry. Two cases are to be distinguished,
according to whether the rotation takes place about the major or about
the minor axis. In Fig. 9 the major axes are oriented along the z-axis of
a rectangular system. If the figure is rotated about this axis, a set of
confocal prolate spheroids is generated whose orthogonal surfaces are
hyperboloids of two sheets. If ¢ measures the angle of rotation from
the y-axis in the z-plane and r the perpendicular distance of a point
from the z-axis, so that

(114) Yy = 7 CcO8 ¢, z = rsin ¢,
then the variables
(115) ut = § ut =1, ut = ¢,

defined by (97) and (114) are called prolate spheroidal coordinates. In
place of (101) we have for the equations of the two confocal systems

xz 7-2 xz 7.2
(116) ? + Ele = 02, 77_2 - 1 —.‘qz = c’,
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from which we deduce

117) z = céy, y=cV (& — 1)Q — 1% cos ¢,
z=cvV (& — 1)1 — 79 sin ¢,
(118) tFz1l, —-1=9=51 0=Z¢=2r

A calculation of the metrical coefficients gives

—_ 2 _ a2
(119) Rhi=c¢ 5;2 _’f, by = c o /H, he=cE =D =1.

When the ellipses of Fig. 9 are rotated about the y-axis, the spheroids
are oblate and the focal points Py, P, describe a circle in the plane y = 0.
Let 7, ¢, ¥, be cylindrical coordinates about the y-axis,

(120) z = r Cos ¢, z = r gin ¢.

If by P; and P, we now understand the points where the focal ring of
radius ¢ intercepts the plane ¢ = constant, the variables { and 5 are
still defined by (97); but for the equations of the coordinate surfaces we
have
7'2 y2 r2 y2

(121) BTE-1-% 7 1-gp
from which we deduce the transformation from oblate spheroidal
coordinates

(122) ul = §, u? = q, ud = ¢,

= 02,

to rectangular coordinates

(123) z=cipsing, y=cV(E—1DQA—1), 2= cécosg.

The surfaces, £ = constant, are oblate spheroids, whereas the orthogonal
family, n = constant, are hyperboloids of one sheet. The metrical
coefficients are

2 a2 2 _ m2
(124) h1=0..‘#££2_717 h2=c1'£1_:2: ha=0£77.

The practical utility of spheroidal coordinates may be surmised from
the fact that as the eccentricity approaches unity the prolate spheroids
become rod-shaped, whereas the oblate spheroids degenerate into flat,
elliptic disks. In the limit, as the focal distance 2¢ and the eccentricity
approach zero, the spheroidal coordinates go over into spherical coordin-
ates, with £ — r, n — cos 6.

7. Paraboloidal Coordinates.—Another set of rotational coordinates
may be obtained by rotating the parabolas of Fig. 10 about their axis
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of symmetry. The variables

(125) =% ul=q  w=4¢
defined by

(126) T =1£fncos¢, y=£fsing, z=3(§ — 19,
are called paraboloidal coordinates. The surfaces, & = constant,
n = constant, are paraboloids of revolution about an axis of symmetry

which in this case has been taken coincident with the z-axis. The plane,
y = 0, is cut by these surfaces along the curves

(127) 2t = 2g2 (% ~ z), 2? = 2 (”7 I z),

which are evidently parabolas whose foci are located at the origin and
whose parameters are £2 and »2. 'The metrical coefficients are

(128) hi = hes = V£ + 7% hs = &n.

8. Ellipsoidal Coordinates.—The equation
xZ 2 z2
(129) e tL+5=, (@>b>o0),

is that of an ellipsoid whose semiprincipal axes are of length a, b, c. Then

z? y? z
FriTErEtere b (&> =,

32 2 2
(130) FrtErs tagy =L (me>n> -,

32 y2 zZ
FrttErr ey b (P> -,

are the equations respectively of an ellipsoid, a hyperboloid of one sheet,
and a hyperboloid of two sheets, all confocal with the ellipsoid (129).
Through each point of space there will pass just one surface of each kind,
and to each point there will correspond a unique set of values for £ 7, ¢.
The variables

(131) ul = § u? = 1, ud =,
are called ellipsoidal coordinates. The surface, # = constant, is a

hyperboloid of one sheet and 4 = constant, a hyperboloid of two sheets.
The transformation to rectangular coordinates is obtained by solving
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(130) simultaneously for z, ¥, z. This gives

[ (£ + a®)(n + a) (¢ + a?)]|
| (2 — ad(c® —a)
 TE+E +)E + Y]
(132) y= = {: e — b9 (a® — b?) ]

E+eHa+AC+A|,
(a® — c2)(b% — ¢?)

Ahs

r ==

H

)

Ahs

z= =

The mutual orthogonality of the three families of surfaces may be verified
by calculating the coefficients gi; from (132) by means of (45). They are
zero when ¢ = j; for the diagonal terms we find

. =1[ ¢t —nE=0 ]*,
T2l aNE T DE T ) }
_1 =00 —8
(133) he =3 [(n TG+ )0 F cz)] ’
. =1[ (S (i) ]*,
1 N (DI DGR D)

It is convenient to introduce the abbreviation

(134) R, = /(s + a8 (s + b%)(s + ¢, (s =& 0.

For the Laplacian of a calar ¢ we then have

2l — 4 —_ i a_'p
135 VY = =G -00 -9 [(” O az(R‘ 6£>
ra-omt(BY)+ - omd(r 0]

THE FIELD TENSORS

1.19. Orthogonal Transformations and Their Invariants.—In the
theory of relativity one undertakes the formulation of the laws of physics,
and in particular the equations of the electromagnetic field, such that
they are invariant to transformations of the system of reference.
Although in the present volume we shall have no occasion to examine the
foundations of the relativity theory, it will nevertheless prove occasion-
ally advantageous to employ the symmetrical, four-dimensional notation
introduced by Minkowski and Sommerfeld and to deduce the Lorentz
transformation with respect to which the field equations are invariant.
To discover quantities which are invariant to a transformation from one
gystem of general curvilinear coordinates to another, it is essential that
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one distinguish between the covariant and contravariant components
of vectors and between unitary and reciprocal unitary base systems.
For our present purposes it will be sufficient, however, to confine the
discussion to systems of rectangular, Cartesian coordinates in which, as
we have seen, covariant and contravariant components are identical.?

Let iy, 13, is be three orthogonal, unit base vectors defining a rectangu-
lar coordinate system X whose origin is located at the fixed point O, and
let r be the position vector of any point P with respect to O.

(1) r = zid1 4 zods + x4,
and since
2 ij+ i = 8a,

the coordinates of P in the system X are
(3) T =T~ iz

Suppose now that if, i}, i; are the base vectors of a second rectangular
system X’ whose origin coincides with O and which, therefore, differs
from X only by a rotation of the coordinate axes. Since

@ ‘ r = alil + afi} + 24idy
the coordinates of P with respect to X’ are
) 2= 1o = miy 8 + o § + 3 - 1

each coordinate of P in X’ is a linear function of its coordinates in X,
whereby the coefficients

i a = ij o

of the linear form are clearly the direction cosines of the coordinate axes
of X’ with respect to the axes of X. A rotation of a rectangular coordi-
nate system effects a change in the coordinates of a point which may be
represented by the linear transformation

3
) = anm, (G=1,23).
k=1

The coefficients a; are subject to certain conditions which are a
consequence of the fact that the distance from O to P, that is to say, the

1This section is based essentially on the following papers: MmnkKowsKl, Ann.
Physik, 47, 927, 1915; SomMMERFELD, Ann. Physik, 32, 749, 1910 and 88, 649, 1910;
Mie, Ann. Physik, 37, 511, 1912; PAULI, Relativititstheorie, in the Encyklopédie der
mathematischen Wissenschaften, Vol. V, part 2, p. 539, 1920.
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magnitude of r, is independent of the orientation of the coordinate system.

3 3
8) 2 @)= 3 @)

i=1

9 ,-i\{ (#)? = 1:2 (23:1 a,-;a:.-) (ké:i a,-;,z;,) = i i T (il ai‘aik),

im]l k=] 7

whence it follows that
3

I when ¢ =k,
(10) 2 ast = ba = when i k.

Equation (10) expresses in fact the relations which must prevail among
the cosines of the angles between coordinate axes in order that they be
rectangular and which are, therefore, known as conditions of orthog-
onality. The system (7), when subject to (10), is likewise called an
orthogonal transformation. As a direct consequence of (10), it may be
shown that the square of the determinant |a;| is equal to unity and hence
laazl = +1. Any set of coefficients aj which satisfy (10) define an
orthogonal transformation in the sense that the relation (8) is preserved.
Geometrically the transformation (7) represents a rotation only when
the determinant |az| = +1. The orthogonal transformation whose
determinant is equal to —1 corresponds to an inversion followed by a
rotation.

Since the determinant of an. orthogonal transformation does not
vanish, the z; may be expressed as linear functions of the zj. These
relations are obtained most simply by writing as in (5):

(11) zp =T i = 2ii] i + 2505« ik + 23ig « Gy
or
: 3
(12) 7 = 2; A *=1,2,3),
=

whence it follows from (8) that
T3
(13) > iy = da.
j=1

Let A be any fixed vector in space, so that

3 3
(14) A= A=Y AL
- kel k=1
The component A} of this vector with respect to the system X' is given by

3 3
(15) Aj=A-ij= 3 Adi- = 3 oads;
1 kel

ke
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thus the rectangular components of a fixed vector upon rotation of the
coordinate system transform like the coordinates of a point. Now
while every vector has in general three scalar components, it does not
follow that any three scalar quantities constitute the components of a
vector. In order that three scalars Ay, A, As may be interpreted as the
components of a vector, it is necessary that they transform like the coordinates
of a point.

Among scalar quantities one must distinguish the variant from the
tnvariant. Quantities such as temperature, pressure, work, and the like
are independent of the orientation of the coordinate system and are,
therefore, called invariant scalars. On the other hand the coordinates
of a point, and the measure numbers, or components, of a vector have
only magnitude, but they transform with the coordinate system itself.
We know that the product A - B of two vectors A and B is a scalar, but a
scalar of what kind? In virtue of (12) and (13) we have

(16) A-B = ;: ALB, = 2(2 azA! )(2 a,,,B') 2 A!Bl;

the scalar product of two vectors is invariant to an orthogonal transformation
of the coordinate system.
Let ¢ be an invariant scalar and consider the triplet of quantities
d .
17) B; =%, G =12 3).

ax;
Now by (12),

1e)
(18) o = o
£ 3
and hence
3 3
r_9¢ _ 9¢ oz _ B, -
(19) By = or, zaxk ozl ;“"‘B’"

the B; transform like the components of a vector and therefore the gradient of ¢,

3

(20) Vo =3 -in
k=1

calculated at a point P, is a fixed vector associated with that point.
Let A; be a rectangular component of a vector A, and

a4;

{21 ;=
21) B = 2

Then by (18) and (15),

o mee a3
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whence, from (10), it follows that

3 3 3 3 OA. 3
) E 5= :k 51 21 <21 aikaﬁ>5x_’: B E 1 B
=1 =17= 1= j=

the divergence of a vector is snvariant to an orthogonal transformation of the
coordinate system.
Lastly, since the gradient of an invariant scalar is a vector and since
the divergence of a vector is invariant, it follows that the Laplacian
d2%¢
2 = . = —
(24) V¢ =V-Ve oz

=1

is tnvariant to an orthogonal transformation.

The transformation properties of vectors may be extended to mani-
folds of more than three dimensions. Let Z1, z2, s, %4 be the rectangular
coordinates of a point P with respect to a reference system X in a four-
dimensional continuum. The location of P with respect to a fixed origin O
is determined by the vector

4
(25) r= 2, :c,-i,-, i,' s = Ojke
j=1

The linear transformation

4
(26) =3, anzs, (7=1,23,4),
k=1

will be called orthogona,lI if the coefficients satisfy the conditions
4
(27) 2 QG = 5,1;.
i=1

The characteristic property of an orthogonal transformation is that it
leaves the sum of the squares of the coordinates invariant:

4 4
(28) 2@%2@%

The square of the determinant formed from the a is readily shown to be
positive and equal to unity, and hence the determinant itself may equal
+1. However, if (26) is to include the identical transformation

(29) z; = zj, (1=1,23,4),

it is obvious that the determinant must be positive. Henceforth we
shall confine ourselves to the subgroup of orthogonal transformations
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characterized by (27) and the condition
(30) [zl = +1.

The transformation then corresponds geometnca,lly to a rotation of the
coordinate axes.

A four-vector is now defined as any set of four variant scalars
4; ¢ =1, 2, 3, 4) which transform with a rotation of the coordinate
system like the coordinates of a point.

4 4

(31) Al = 2 apds, Ay = 2 and!.

k=1 i=1

It is then easy to show, as above, that the scalar product of two four-

vectors and the four-dimensional divergence of a four-vector are invariant .

to a rotation of the coordinate system.

(32) A.B= EA,,B,, EA’B;,

J=1
943
(33) - O-A= E a:c, 6:0,
Furthermore the derivatives of a scalar,
(34) By =g (=1,234

transform like the components of a four-vector and hence the four-
dimensional Laplacian of an invariant scalar,

2 4 2
35) 0% = %:’ 37?;,
= je=1
is also invariant to an orthogonal transformation.

1.20. Elements of Tensor Analysis.—Although most physical quanti-
ties may be classified either as scalars, having only magnitude, or as
vectors, characterized by magnitude and direction, there are certain
entities which cannot be properly represented by either of these terms.
The displacement of the center of gravity of a metal rod, for example,
may be defined by a vector; but the rod may also be stretched along the
axis by application of a tension at the two ends without displacing the
center at all. The quantity employed to represent this stretching must
thus indicate a double direction. The inadequacy of the vector concept
becomes all the more apparent when one attempts the description of a
volume deformation, taking into account the lateral contraction of the

e
|
|
|

bt o e o R VT, A A L
bR R R R e RS S B i =
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rod. In the present section we shall deal only with the simpler aspects
of tensor calculus, which is the appropriate tool for the treatment of such
problems.

In a three-dimensional continuum let each rectangular component
of a vector B be a linear function of the components of a vector A.

By = Tudy + Td: + Tisd,,
(36) By = Tad: + TaAz + Tuds,
Bs = Ts1d1 + Ts:Az + Tssds.

In order that this association of the components of B with the components
of A in the system X be preserved as the coordinates are rotated, it is
necessary that the coefficients T transform in a specific manner. The
T are therefore variant scalars. A tensor—or more properly, a tensor of
rank two—will now be defined as a linear transformation of the com-
ponents of a vector A into the components of a vector B which is invariant
to rotations of the coordinate system. The nine coefficients Ty of the
linear transformation are called the tensor components.

To determine the manner in which a tensor component must trans-
form we write first (36) in the abbreviated form

3
37 B;= 3 Tads, (j=123).
E=1
If (37) is to be invariant to the transformation defined by
3 3
(38) z = 2 a3, 2 @it = i,
k= i=1
then the T; must transform to 7Y% such that
(39) 2 ThAS, ¢ =1023).
[=1

Multiply (37) by as; and sum over the index j.

3 3. 3
(40) > a;B; = 2; >, a;TuAs.
i=1 i=1i=1

But
. s .
(41) - B = 2 a:;:B;, A = 2 anAj,
=1 lal
and, hence,
3 3

3
(42) Bi=3 ( 2 aiialkTik) A = i TaAL
= =1

lex] =] kel
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The components of a tensor of rank two transform according to the law

3 3
(43) = 2 2 aiionTix,
=11

inversely, any set of nine quantities which transform according to (43)
constitutes a tensor.

By an analogous procedure one can show that the reciprocal trans-
formation is '

3 3
(44) T,'k = 2 2 a,-,vau,T,f,.
i=

t=1

(7:; l= 1, 2; 3);

If the order of the indices in all the components of a tensor may Be

changed with no resulting change in the tensor itself, so that Ty = T4,

the tensor is said to be completely symmetric. A tensor is completely
antisymmetric if an interchange of the indices in each component results
in a change in sign of the tensor. The diagonal terms T'; of an anti-
symmetric tensor evidently vanish, while for the off-diagonal terms,
Ta = —Tx. It is clear from (43) that if Ty = T4;, then also T, = T%.
Likewise if T = — T, it follows that Ty = —T%. The symmetric or
antisymmetric character of a tensor is invariant to a rotation of the
goordinate system.

The sum or difference of two tensors is constructed from the sums or
differences of their corresponding components. If R is the sum of the
tensors ?S and ?T,! its components are by definition

(45) By = Si + Ta, (J,k=1,2,3).

In virtue of the linear character of (43) the quantities Rj transform like
the S;z and T and, therefore, constitute the components of a tensor ZR.
From this rule it follows that any asymmetric tensor may be represented
as the sum of a symmetric and an antisymmetric tensor. Assuming R
to be the given asymmetric tensor, we construct a symmetric tensor 2S
from the components

(46) Siz = $(Bix + Ri) = Si;
and an antisymmetric tensor *T from the components
(47) Ti = (R — Bj) = —Th.

Then by (45) the sum of 2S and 2T so constructed is equal to ?R.
In a three-dimensional manifold an antisymmetric tensor reduces to
three independent components and in this sense resembles a vector. The

1 Tensors of second rank will be indicated by a superscript as shown.
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tensor (36), for example, reduces in this case to

By =0 — Tyud, + Ti:ds,
(48) By = Taxd: + 0 — Ts45,
By = —TuA; 4+ Ts4,+ 0.

These, however, are the components of a vector,

(49) B=TXA,
wherein the vector T has the components
(50) T, = T32; T, = T13, T3 = Ta.

Now it will be recalled that in vector analysis it is customary to distin-
guish polar vectors, such as are employed to represent translations and
mechanical forces, from azial veciors with which there are associated
directions of rotation. Geometrically, a polar vector is represented by a
displacement or line, whereas an axial vector corresponds to an area. A
typical axial vector is that which results from the vector or cross product
of two polar vectors, and we must conclude from the above that an axial
vector is in fact an antisymmetric tensor and its components should
properly be denoted by two indices rather than one. Thus for the coms
ponents of T = A X B we write

(51) T,'k = A,'Bk - AkB,' = —Tk,', (j, k = 1, 2, 3).

If the coordinate system is rotated, the components of A and B are
transformed according to

3

3
(562) A; = 2; aijd;, By = 2 aaB;.
I=

i=1

Upon introducing these values into (51) we find
3 3

(53) A;By — AxB; = 2 > ayaw(A}B; — AiB),
I=1{=1

a relation which is identical with (44) and which demonstrates that the
components of a ‘‘vector product” of two vectors transform like the
components of a tensor. The essential differences in the properties of
polar vectors and the properties of those axial vectors by means of which
one represents angular velocities, moments, and the like, are now clear:
axial vectors are vectors only in their manner of composition, not in
their law of transformation. It is important to add that an antisym-
metric tensor can be represented by an axial or pseudo-vector only in a
three-dimensional space, and then only in rectangular components.
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Since the cross product of two vectors is in fact an antisymmetric
tensor, one should anticipate that the same is true of the curl of a vector.
That the quantity 84;/0zx, where 4; is a component of a vector A, is
the component of a tensor is at once evident fgom Eq. (22).

3 3

9A] 94 ;

(59) oz, 21 ,21 @i G
=

The components of V X A,

34,
(55) 1, =3 % _p,

i k=12 3),
oz; 9o (J, 3 )

therefore, transform like the components of an antisymmetric tensor.
The divergence of a tensor is defined as the operation

< oT;
(56) (div 7T); = > 77 = Bj,

(1=1,23).
0xx
k=1

The quantities B; are easily shown to transform like the components of
a vector.

. aT, < 0 8Th _ 3 éa"ﬂ_% aT,,,,
= E: % = Kl
( ) aﬂ:,‘ i axk Z =~ axk

or, on summing over ! and applying the conditions of orthogonality,

B = 3 aT;{z__ ia,, 3 a_TL" =20..B.-
(58) P = azy =1 ? Z 9zx =1 o

The divergence of a tensor of second rank is a vector, or tensor of first rank.
The divergence of a vector is an invariant scalar, or tensor of zero ran.
These are examples of a process known in tensor analysis as contraction.

As in the case of vectors, the tensor concept may be extended to mani-
folds of four dimensions. Any set of 16 quantities which transform
according to the law,

4 4
(59) Ty = > > asouls, G,1=1,23,9),
=1 =1
or its reciprocal,
4 4
60) Ti = aijalkT-{l; (j’ k=1,234),
( ’ 3= g

will be called a tensor of second rank in a four-dimensional manifold.
As in the three-dimensional case, the tensor is said to be completely
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symmetric if T; = Ti;, and completely antisymmetric if T = — Ty,
with T;; = 0. In virtue of its definition it is evident that an anti-
symmetric four-tensor contains only six independent components.
Upon expanding (59) and replacing T; by — T, then re-collecting terms,
we obtain as the transformation formula of an antisymmetric tensor the
relation

(61) T4 = 2 2 (@sjom — awar) Ty = 2

4
i=1 k=1 j=1 k=1

Qi Gk
a;; an T:'k: (k >j)-

Any six quantities that transform according to this rule constitute an
antisymmetric four-tensor or, as it is frequently called, a siz-vector.

In three-space the vector product is represented geometrically by the
area of a parallelogram whose sides are defined by two vectors drawn
from a common origin. The components of this product are then the
projections of the area on the three coordinate planes. By analogy, the
vector product in four-space is defined as the ‘“‘area’ of a parallelogram
formed by two four-vectors, A and B, drawn from a common origin.
The components of this extended product are now the projections of the
parallelogram on the siz coordinate planes, whose areas are

(62) T,'k = A,‘Bk - AkB,' = —T];,‘, (j, k = 1, 2, 3, 4).

The vector product of two four-vectors is therefore an antisymmetric
four-tensor, or six-vector.
If again A is a four-vector, the quantities

dAr 93A;

(63) Ta = a_x, ozs =

(j: k= 1: 2: 3: 4):
can be shown as in (54) to transform like the components of an anti-
symmetric tensor. The T may be interpreted as the components of
the curl of a four-vector.

As in the three-dimensional case the divergence of a four-tensor is
defined by

4
T x
?
! axk

(64) (div *T); =

(j = 1: 2, 3: 4):
e

a set of quantities which are evidently the components of a four-vector.
1.21. The Space-time Symmetry of the Field Equations.—A remark-

able symmetry of form is apparent in the equations of the electromagnetic

field when one introduces as independent variables the four iengths

(65) T = z, Zy =9, z3 = 2, zs = ict,

where ¢ is the velocity of light in free space. When expanded in rec-
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tangular coordinates, the equations

M vxE-2 =3, V) v-D=,

are represented by the system =
aH 3 aH 2 7’ 3D1

0 + EE: 3—1}3 — T:l:,; = J1,
9Hs 9H, . 8Dy _
66 am T ozs " omi T2
(%) oHy _oHy o _ . 0Ds_
9r1 9z, 0z &

0D;

. dD; aD; | . .
+ 7.ca—:l:3 + 0 = ‘cp.

i T + ic TS
We shall treat the right-hand members of this system as the components
of a “four-current”’ density,
(67) J1=J:, J2=Jy, J3=Jz, J4=’L'Cp,

and introduce in the left-hand members a set of dependent variableg
defined by

G11 =0 G12 = Ha G13 = —Hz Gu = —’iCD1
(68) I = —Hj G2 =0 G = H, Gy = —icD,
G31 = H2 G32 = —H1 G33 =0 G34 = —’l:CDs

G41 = 'ich G42 = iCDz G43 = 'iCDz G44 = 0.
Then in the reference system X, Egs. (II) and (IV) reduce to

~ 3G x

= oTs = Ji} (.7 = 1: 2: 3: 4)-

(69)

k

Only six of the G are independent, and the resemblance of this set
of quantities to the components of an antisymmetric four-tensor is
obvious. Since the divergence of a four-tensor is a four-vector, it follows
from (69) that if the G constitute a tensor, then the Ji are the com-
ponents of a four-vector; inversely, if we can show that J is indeed a
four-vector, we may then infer the tensor character of 2G. However,
we have as yet offered no evidence to justify such an assumption. In
the preceding sections it was shown that the vector or tensor properties
of sets of scalar quantities are determined by the manner in which they
transform on passing from one reference system to another. Evidently
an orthogonal transformation of the coordinates z; corresponds to a
simultaneous change in both the space coordinates z, y, z and the time ¢,
and only recourse to experiment will tell us how the field intensities may
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be expected to transform under such circumstances. In Sec. 1.22 we
shall set forth briefly the experimental facts which lead one to conclude
that the J; are components of a four-vector, and the Gj the components
of a field tensor; in the interim we regard (69) and the deductions that
follow below merely as concise and symmetrical expressions of the field
equations in a fixed system of coordinates.

The two homogeneous equations

MVvxE+SZ =0, (@Dv.B=y,

are represented by the system

9B: 3B, , . 3By _

O+E_6_:cs+wax4—0’
OBy g O 0B
(70) 6131 3133 04
9E: _ oE, _ 9B _
6131 a—x2+0+’bca—x4—0,
9By _aB, B,

8131 6:1:2 oz3

After division of the first three of these equations by 7, an antisym-
metrical array of components is defined as follows:

Fu=20 Fi2 = B; Fis= —B; F14=_EE1
Fo = —B; Fp =0 Fops = B, Foy = “"EEz
c
(71) !
Fs = By Fyp = —B, F35=0 F34=_£E3‘
7 7 )
F41='—E1 F42="‘E2 F43=—E3 F44=0_
c c c

Then all the equations of (70) are contained in the system

oFy O  OFyz

oz or i az;

(72)

=0’

where ¢, j, k are any three of the four numbers 1, 2, 3, 4.

The arrays (68) and (71) are congruent in the sense that in each the
real components pertain to the magnetic field, while the imaginary com-
ponents are associated with the electric field. To indicate this partition
it is convenient to represent the sets of components by the symbols

(73) °F = (B, - g E), 2G = (H, —icD).
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Now the field equations may be defined equally well in terms of the
“dual” systems:

(74) R = (—'E"E,B), 1G* = (—icD, H),
or
% =0 Fa=-iB, Fi=im  Fi-3
o s=im  Fa=o0 Fa=~iB  Fh-B
) Fa=-tm, m<=im  Fn-o0 % = B,

F% = —B, F&% = —B, F& = —B, F& =0,

and a corresponding system for the components of 2G*. Upon intro-
ducing these values into (I) and (III), and (II) and (IV), respectively,
we obtain

*
(76) Sk~ o, G=1239,
k-=1
oGE A
7 TR TRy Gik1-1239).

It has been pointed out by various writers that this last representation
is artificial, in that (74) implies that E is an axial vector in three-space
and B a polar vector, whereas the contrary is known to be true. The
representation

1; aF; OF « e
(72) a:v’: atG:" Fx%k =0, (’L: I k=1, 2,3, 4))
4
G, .
(69) 35 =dJj (.7 =1,2,3, 4))
=l

must in this sense be considered the “natural” form of the field equations.
To these we add the equation of continuity,

dp
W) v-J+ 3
which in four-dimensional notation becomes
Qo
k —
(78) = Frl 0.

If the components Fj; are defined in terms of the components of a
“four-potential’’ @ by

(79) Fik=—_;’ (j;k=1,2)3)4):
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one may readily verify that Eq. (72) is satisfied identically. Now in
three-space the vectors E and B are derived from a vector and scalar
potential.

(80) E——v¢—i’é, B=vXA;
or, in component form,

g Lo, oA od,
(81) o= ( 4’) a:u’ Bi= o "o

where the indices ¢, 7, k are to be taken in cyclical order. Clearly all
these equations are comprised in the system (79) if we define the com-
ponents of the four-potential by

(82) $; = A-"! ®, = Aﬂ: by = An $; = Zd’.

As in three dimensions, the four-potential is useful only if we can

determine from it the field *G(H, —icD) as well as the field 2F(B, —g E).

Some supplementary condition must, therefore, be imposed upon & in
order that it satisfy (69) as well as (72); thus it is necessary that the
components G be related functionally to the Fjz. We shall confine the
discussion here to the usual case of a homogenecous, tsotropic medium and
assume the relations to be linear. To preserve symmetry of notation
it will be convenient to write the proportionality factor which charac-
terizes the medium as v, so that

(83) G = vaF ;

but it is clear from (68) and (71) that!?
84) vi= % whenj, k=1, 2,3, vie = ee? whenjork = 4.

These coefficients are in fact components of & symmetrical tensor, and
with a view to subsequent needs the diagonal terms are given the values

(85) Yii = %" (3=1238), vu= pect
Equation (69) is now to be replaced by
4
dF; ,
(86) - Z ik azﬂ‘ =Jj =123, 1).
=]

1 A medium which is anisotropic in either its electrical properties or its magnetic
properties may be represented as in (83) provided the coordinate system is chosen to
coincide with the principal axes. This also is the case if its principal axes of elec-
trical anisotropy coincide with those of magnetic anisotropy.
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Upon introducing (79) we find that (86) is satisfied, provided @ is a
solution of

4
9% .
(87) 25 (va®) = —J;, G=1,234),
=1 k =
subject to the condition
4
i} .
(88) > 7 Ga®) = 0, G=1,234).
k=1
This last relation is evidently equivalent to
(89) V-A+pe%—(f=0,
and (87) comprises the two equations
924; ,
vaJ' - FGT-/ = _FJJ': (.7 = 1: 2,3),
¢ 1
(90) Vip — #GW = e p-

In free space poco = c7% vi = po™Y, for all values of the indices. Equa-
tions (87) and (88) then reduce to the simple form:

4 4
e 0B, .
= axlzg = F'0JJ: o 9Tk = 0} (J = 1: 2: 3: 4)'

(91)
;

1.22. The Lorentz Transformation.—The physical significance of
these results is of vastly greater importance than their purely formal
elegance. A series of experiments, the most decisive being the celebrated
investigation of Michelson and Morley,* have led to the establishment of
two fundamental postulates as highly probable, if not absolutely certain.
According to the first of these, called the relativity postulate, it is impossible
to detect by means of physical measurements made within a reference
system X a uniform translation relative to a second system X’. That
the earth is moving in an orbit about the sun we know from observations
on distant stars; but if the earth were enveloped in clouds, no measure-
ment on its surface would disclose a uniform translational motion in
space. The course of natural phenomena must therefore be unaffected
by a nonaccelerated motion of the coordinate systems to which they are
referred, and all reference systems moving linearly and uniformly relative
to each other are equivalent. For our present needs we shall state the
relativity postulate as follows: When properly formulated, the laws of

1 MiceeLsoN and MorLeY, Am. J. Sci., 8, 84, 1887,
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physics are invariant to a iransformation from one reference system to
another moving with a linear, uniform relative velocity. A direct conse-
quence of this postulate is that the components of all vectors or tensors
entering into an equation must transform in the same way, or covariantly.
The existence of such a principle restricted to uniform translations was
established for classical mechanics by Newton, but we are indebted to
Einstein for its extension to electrodynamics.

The second postulate of Einstein is more remarkable: The velocity
of propagation of an electromagnetic disturbance in free space is a universal
constant ¢ which ts independent of the reference system. This proposition
is evidently quite contrary to our experience with mechanical or acoustical
waves in a material medium, where the velocity is known to depend
on the relative motion of medium and observer. Many attempts have
been made to interpret the experimental evidence without recourse to
this radical assumption, the most noteworthy being the electrodynamic
theory of Ritz.® The results of all these labors indicate that although a
constant velocity of light is not necessary to account for the negative
results of the Michelson-Morley experiment, this postulate alone is con-
sistent with that experiment and other optical phenomena.?

Let us suppose, then, that a source of light is fixed at the origin O
of a system of coordinates X(z, y, 2). At the instant { = 0, a spherical
wave is emitted from this source. An observer located at the point
z, ¥, zin X will first note the passage of the wave at the instant ct, and the
equation of a point on the wave front is therefore

(92) 24yt 22— =0.

The observer, however, is free to measure position and time with respect
to a second reference frame X'(z’, y’, 2’) which is moving along a straight
line with a uniform velocity relative to 0. For simplicity we shall assume
the origin O’ to coincide with O at the instant ¢ = 0. According to the
second postulate the light wave is propagated in X’ with the same
velocity as in X, and the equation of the wave front in X’ is

(93) 2yt 42—’ =0,

By ¢ we must understand the time as measured by an observer in X’
with instruments located in that system. Here, then, is the key to the
transformation that connects the coordinates z, y, z, ¢ of an observation
or event in X with the coordinates z’, ¥/, 2/, t’ of the same event in X': it
must be linear and must leave the quadratic form (92) invariant. The
linearity follows from the requirement that a uniform, linear motion of a
particle in X should also be linear in X’.

L Ritz, Ann. chim. phys., 18, 145, 1908.
2 An account of these investigations will be found in Pauli’s article, loc. cit., p. 549.
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Let
(94) z; = z, T2 =7, T3 = 2, x4 = 1ict,

be the components of a vector R in a four-dimensional manifold
X(x1, 23, 3, Zs)- =

(95) R =l + o4+ + ok

The postulate on the constancy of the velocity ¢ will be satisfied by the
group of transformations which leaves this length invariant. But in
Sec. 1.19 it was shown that (95) is invariant to the group of rotations in
four-space and we conclude, therefore, that the transformations which
take one from the coordinates of an event in X to the coordinates of that
event in X’ are of the form

4
(26) 7 =3 aat, (G=1,23,4),
=1
where
4
(27) i = O, (i) k= 1: 2: 3: 4))
i=1

the determinant |a;| being equal to unity.

We have now to find these coefficients. The calculation will be
simplified if we assume that the rotation involves only the axes z; and x4,
and the resultant lack of generality is inconsequential. We take, there-
fore, 2y = z1, 25 = Z,, and write down the coefficient matrix as follows:

Z1 4] Z3 T4
(96) z; 1 0 0 ]
z; 0 1 0 0

73 0 0 Gas Q34

EA 0 0 Qg G4

The conditions of orthogonality reduce to
(97) afs+af; =1, af +ah =1, Q33034 + @s3a44 = 0.

If we put as = «, @ss =iaB, we find from (97) that @y = *e
a3 = Fiaf, /1 — %2 = +1. Only the upper sign is consistent with
the requirement that the determinant of the coefficients be positive unity,
and this in turn is the necessary condition that the group shall contain
the identical transformation. In terms of the single parameter 8 the
coefficients are

1 = —ga =B .
Vi@ 34 43 VIi—p

(98) Q33 = Quu =
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for the transformation itself, we have
(99) Ty =3, 2=y

zy = ﬁ (xs + tBxy), Ty = ﬁ (%4 — ipzs).

Reverting to the original space-time manifold this is equivalent to

— ’
o=z, y =Y

(100) 1 _ , 1 B
Zz = —‘\/—1 — ﬁz (Z ﬁct), t = '—,?ﬁz <t EZ).

The parameter 8 may be determined by considering z’, ¥/, 2’ to be the
coordinates of a fixed point in X’. The coordinates of this point with
respect to X are z, ¥, z. Since dz’ = 0, it follows that

dz v
(101) E—v=p, B=D

and hence the rotation defined in (96) and (97) is equivalent to a transla-
tion of the system X’ along the z-axis with the constant velocity v relative

to the unprimed system X.
The transformation

7 =z, y

102
(102) z’=;(z—vt), t’=;<t—%z),
v? c
,h—ﬁ —
obtained from (100) by substitution of the value for 8, or its inversion,

(103) z2=———(z 4+ ot'), = L (t_’ +2 z’):

v? v? c?

has been named for Lorentz, who was the first to show that Maxwell’s
equations are invariant with respect to the change of variables defined
by (102), but not invariant under the “Galilean transformation:”

(104) d=z—ot, =t

'

All known electromagnetic phenomena may be properly accounted for
if the position and fme coordinates of an event in a moving system X’
be related to the coordinates of that event in an arbitrarily fixed system
X by a Lorentz transformation. The Galilean transformation of classical
mechanics represents the limit approached by (102) when v < ¢, and
may be interpreted as the relativity principle appropriate to a world in
which electromagnetic forces are propagated with infinite velocity.
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1.28. Transformation of the Field Vectors to Moving Systems.—We
shall not dwell upon the manifold consequences of the Lorentz transforma-
tion; the Fitzgerald-Lorentz contraction, the modified concept of simul-
taneity, the variation in apparent mass, the upper limit ¢ which is imposed
upon the velocity of matter, belong propetly to the theory of relativity.
The application of the principles of relativity to the equations of the
electromagnetic field is essential, however, to an understanding of the
four-dimensional formulation of Sec. 1.21.

The Lorentz transformation has been deduced from the postulate on
the constancy of the velocity of light and has been shown to be equivalent
to a rotation in a space zi, T2, Z3, 2+ = tct. Now according to the rela-
tivity postulate, the laws of physics, when properly stated, must have
the same form in all systems moving with a relative, uniform motion;
otherwise, it would obviously be possible to detect such a motion.. In
Secs. 1.19 and 1.20 it was shown that the curl, divergence, and Laplacian
of vectors and tensors in a four-dimensional manifold are invariant to a
rotation of the coordinate system. Therefore, to ensure the invariance
of the field equations under a Lorentz transformation it is only necessary
to assume that the four-current J and the four-potential @ do indeed
transform like- vectors, and that the quantities ?F, *G transform like
tensors. In other words, we base the vector and tensor character of these
four-dimensional quantities directly on the two postulates.

The four-current J satisfies the equation

4
=Nk _
(78) D-J—zaxk—o.
Under a rotation of the coordinate system the components transform as
4
(105) - Ji = Daad,
k=1

or, upon introducing the values for a; from (98),

r 4 —_
(106) 1 Jo=J,, J=Jy,

— L -, = (o-2J
Viog ot vi—p\" &7

with its inverse transformation

1 1 v

——— (J} + vp"), = ==t )
\/lTﬂ"’ ( P ) P \/1 — ﬂ2 (P 02

We shall assume henceforth that the reference system X’ is fixed within a
material body which moves with the constant velocity v relative to the

J, =

107) J. =
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system X. This latter may usually be assumed at rest with respect to
the earth. If the velocity v is very much less than the speed of light,
Eq. (107) is approximately equal to

(108) J. = J, + v, p=y.

An observer on the moving body measures a charge density p’ and a
current density J;; his colleague at rest in X finds the current J., aug-
mented by the convection current vp'.

In like manner the relations between the electric and magnetic
vectors defining a given field in a fixed and in a moving system are
obtained directly from the rule (61) for the transformation of the com-
ponents of an antisymmetric tensor, Upon substitution of the appro-
priate values for the coefficients a;, one obtains for the components of %F :

14 —
12 = Guaeal1a = Fis,

'13 = anassfis + a4 = ‘\/%}32 (Fls + 'iﬂF14),
e = enasFis + an1auFy = ﬁ (F14 — 18F13),
(109) 53 = Q2sssl o3 + (22034F 04 = '\—/l%ﬂz (F2z + ©6F 24),
1 .
24 = Q220asl 23 + Ao9aaFoy = Vi (Fas — iBF23),
§4 = ((133(144 - 034043)F34 = F34,
and, hence,
1 v 1
i Z s - = . —
Bz - '\/lTﬂz(Bz + 02 Ell) Ez \/1 — ﬂ2 (E vBII))
1 v r 1
(110) B{, = \71_—,32(By — -(:—ZE,,); Ey = ‘\/1—'—/32 (Ezl + sz);
B; = BZ; E; = E..

The restriction to translations along the z-axis may be discarded by
writing v as a vector representing the translational velocity of X’ (the
moving body) in any direction with respect to a fixed system X. Since in
(110) the orientation of the z-axis was arbitrary, we have in general

(111) B!y = By, E'y = Ey,
=1 (pg_1
B, = ’—1—/32B 02VXE_L’
Bimgrop BT
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where || denotes components parallel, I components perpendicular to
the axis of translation. Dropping terms in ¢=2, as is justifiable whenever
the body is moving with a velocity » <3 X 108 meters/second, we
obtain the approximate formulas

B'| = By, E'y = E,,
B’y = B,, Ey=E, + (vXB),.

The implication of these results is striking indeed: the electric and
magnetic fields E and B have no independent existence as separate

(112)

entities. The fundamental complex is the field tensor 2F = (B, —-_z E);

the resolution into electric and magnetic components is wholly relative
to the motion of the observer. When at rest with respect to permanent

magnets or stationary currents, one measures a purely magnetic field B. -

An observer within a moving body or system X’, on the other hand,
notes approximately the same magnetic field, but in addition an electro-
static field of intensity E’ = v X B. Or, inversely, the moving body
may carry a fixed charge. To an observer on the body, moving with the
charge, the field is purely electrostatic, whereas his colleague aground
finds a magnetic field in company with the electric, identifying quite
rightly the moving charge with a current.

From the tensor 2G = (H, —icD) are calculated in like fashion the
transformations of the vectors H and D from a fixed to a moving system.

H'y = H), D'y = Dy,
;L 1
H¢—ﬁ(ﬂ—VXD)¢, D

(113) ,
Ve
D+ cl—zv X H),.

The invariance of Maxwell’s equations to uniform translations amounts
to this: if the vector functions E, B, H, D define an electromagnetic field
in a system X, the equations

14
v X E'+%=o, v/ .-B =0,

s
vaHI_aa%zjl’ vI.DI=pI,

(114)

are satisfied in a system X’ which moves with the constant velocity v
relative to X, the operator v/ implying that differentiation is to be effected
with respect to the variables z’, 4/, 2. An observer at rest in X’ inter-
prets the vectors E/, B/, H’, D’ as the intensities of an electromagnetic
field satisfying Maxwell’s equations. Clearly the ratios of D to E and

H to B are not preserved in both systems. The macroscopic parameters
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¢, p, ¢ are also subject to transformation, which may be ascribed to an
actual change in the structure of matter in motion. In practice one is
interested usually in the mechanical and electromotive forces, measured in
the fized system X, which act on moving matfer, rather than in the trans-
formed field intensities E’, B/, H’, D’. The determination of these
forces and of the differential equations which they satisfy within the
framework of the relativity theory was accomplished by Minkowski in
the course of his investigation on the electrodynamics of moving bodies.

The vector character of the four-potential is demonstrated by Eq.
(79) which expresses the field tensor ?F as the curl of ®. Under a Lorentz

transformation
4

(115) q:‘;' = 2 a3 Px (.7 = 1} 2: 3; 4);
k=1
or, in terms of vector and scalar potentials,
! = AI — A
e A=A , A
r=———|A.— 5 %) = ———— (¢ — vA.).
4= (4 cz¢) ¥ = = (0 — vA)

As in the case of the field vectors, the resolution into vector and scalar
potentials in three-space is determined by the relative motion of the

observer.

In conclusion it may be remarked that a rotation of the coordinate
system leaves invariant the scalar product of any two vectors. It was
in fact from the required invariance of the quantity

(117) R:R = R? =22+ y*+ 22 — c%?
that we deduced the Lorentz transformation. Since the current density -
J and the potential ® have been shown to be four-vectors, it follows that
the quantities
Jt=Ji+ Ji + J7 — %l
2
(118) @ = A2+ A2 + A2 — %,
q)'J = A;Jz'l"Any'l"Asz - d’p’

are true scalar invariants in a space-time continuum. There are, more-
over, certain other scalar invariants of fundamental importance to the
general theory of the electromagnetic field. From the transformation
formula Eq. (59) the reader will verify that if 28 and *T are two tensors
of second rank, the sums

4 4
(119) 2 2 Sjijk = invariant,
1

=1 k= j=1 k=l

4 4
SiTx; = invariant,
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are invariant to a rotation of the coordinate axes. These quantities
may be interpreted as scalar products of the two tensors. Let us form
first the scalar product of ?F with itself. According to (71) and (119)
we find .
4 4 1“‘

120 2 = 2(B? — -, B?) = invariant.

(120) Z ;,2_1 I 2( p B ) invariant
Next we construct the scalar product of 2F with its dual F* defined in
(75).

4 4 .
(121) FaF% = —42B.E = invariant.
From the tensor 2G and its dual ?G* may be constructed the invariants
4 4
(122) 2 2 % = 9(H? — ¢?D?) = invariant,
=1 k=1
s :
(123) GuGY = —4icH - D = invariant.

Proceeding in the same fashion, we obtain

(124) EEF,,,G,I,—EE Fi0% = 2(B-H — E. D)

i=1 k=1 i=1 k=1
= invariant,
1
S S 2 E: FiGay = —2 . ~E.
(125) 2 2 FzG} = P FiGx 2z(cB D+cE H)

= Invariant.

The invariance of these quantities in configuration space is trivial; they
are set apart from other scalar products by the fact that they preserve the
same value in every system moving with a uniform relative velocity.

CHAPTER II
STRESS AND ENERGY

To translate the mathematical structure developed in the preceding
pages into experiments which can be conducted in the laboratory, we
must calculate the mechanical forces exerted in the field upon elements of
charge and current or upon bodies of neutral matter. In the present
chapter it will be shown how by an appropriate definition of the vectors
E and B these forces may be deduced directly from the Maxwell equations.
In the course of this investigation we shall have to take account of the
elastic properties of material media. A brief digression on the analysis of
elastic stress and strain will provide an adequate basis for the treatment
of the body and surface forces exerted by electric or magnetic fields.

STRESS AND STRAIN IN ELASTIC MEDIA

2.1. The Elastic Stress Tensor.—Let us suppose that a given solid or
fluid body of matter is in static equilibrium under the action of a specified
system of applied forces. Within
this body we isolate a finite volume z
V by means of a closed surface S, as
indicated in Fig. 12.

Since equilibrium has been as-
sumed for the body and all its parts,
the resultant force F exerted on the
matter within S must be zero. Con-
tributing to this resultant are volume
or body forces, such as gravity, and 0 y

‘surface forces exerted by elements of

matter just outside the enclosed

region on contiguous elements /4

within. Throughout V, therefore, Fie. 12.—A region V bounded by a surface
we suppose force to be dis tributed § in an elastic medium under stress.
with a density £ per unit volume, while the force exerted by matter outside
S on a unit area of S will be represented by the vectort. The components
of t are evidently normal pressures or tensions and tangential shears. The
condition of translational equilibrium is expressed by the equation

) j'Vfdv+j;tda=o.
83



